2次元共形場理論
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2018/08/02 03:01 UTC 版)
2次元共形場理論は歴史的には1984年にBelavin、ポリャコフ、Zamolodchikov(BPZ)によって初めて定式化された。2次元共形場理論で言及するのは次のような場合である。 一般に(2+1次元以上の時空では)共形変換群は有限個の生成子からなる有限次元リー群である。しかし、空間1次元+時間1次元(d=2)の2次元共形場理論場合に限り、共形変換群SO(2,2)は正則関数の等角写像の変換群(無限次元リー群)に拡張される。この場合共形変換群SO(2,2)は無限個の生成子からなる代数(Virasoro 代数)の部分代数となる。Virasoro代数から得られるヒルベルト空間に対する制限は強力であり、ミニマル模型と呼ばれる模型群に対しては、(これには臨界点上の2次元イジング模型も含まれる)全ての相関関数の振る舞いをVirasoro代数とWard-Takahasi恒等式から厳密に求めることができる(可解である)。可解である2次元共形場理論は、2次元統計系あるいは1+1次元量子系を理解する上で強力な武器となっている。
※この「2次元共形場理論」の解説は、「共形場理論」の解説の一部です。
「2次元共形場理論」を含む「共形場理論」の記事については、「共形場理論」の概要を参照ください。
- 2-次元共形場理論のページへのリンク