行列の階数とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > 行列の階数の意味・解説 

行列の階数

(行列のランク から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2025/05/21 15:40 UTC 版)

線型代数学における行列階数(かいすう、rank; ランク)は、行列の特徴を表す最も基本的な数の一つ。行列に同伴する線型方程式系および線型変換がどのくらい「非退化」であるかを示す数である。行列の階数には幾つもの同値な定義がある。

例えば、行列 A の階数 rank(A)(あるいは rk(A) または丸括弧を落として rank A)は、A列空間(列ベクトルの張るベクトル空間)の次元[1]に等しく、また A行空間の次元[2]とも等しい。行列の階数は、対応する線型写像の階数である。

行列の階数の概念はジェームス・ジョセフ・シルベスターが考えた[3]

定義

任意の行列 A について、以下はいずれも同値である。

  • A の列ベクトルの線型独立なものの最大個数(A の列空間の次元)
  • A の行ベクトルの線型独立なものの最大個数(A の行空間の次元)
  • A基本変形を施して階段行列 B を得たとする。このときの B の零ベクトルでない行(または列)の個数(階段の段数とも表現される)
  • 表現行列 A線型写像の像空間の次元。詳しくは#線型写像の階数を参照。
  • A の 0 でないような小行列式の最大サイズ
  • A特異値の数

文献により、上記の条件のいずれかを以って行列 A の階数は定義される。

注意

いま A の列空間の次元を「列階数」、行空間の次元を「行階数」と呼べば、線型代数学における基本的な結果の一つとして、列階数と行階数は常に一致するという事実が成立するから、それらを単に A の階数と呼ぶことができる。これについて、Wardlaw (2005)[4] はベクトルの線型結合の基本性質に基づく四文証明を与えた(これは任意の上で有効である)。また、Mackiw (1995) [2]実数体上の行列に対して有効な、直交性を用いたエレガントな別証明を与えている。両証明とも教科書 Banerjee & Roy (2014) [5]に出ている。

性質

Am × n 行列とする。また、 f を表現行列 A の線型写像とする。

一般の体上

  • m × n 行列の階数は非負整数で、m, n の何れも超えない。すなわち rank(A) ≤ min(m, n) が成り立つ。特に rank(A) = min(m, n) のとき、A最大階数full rank; フルランク; 充足階数、完全階数)を持つとかフルランク行列などといい、さもなくばA階数落ち英語版 (rank deficient; 階数不足) であるという。
  • A零行列のときかつその時に限り rank(A) = 0.
  • f単射となるための必要十分条件は、rank(A) = n(これを A列充足階数を持つという)となることである。
  • f全射となるための必要十分条件は、rank(A) = m となる(A行充足階数を持つ)ことである。
  • A正方行列(つまり m = n)のとき、A正則であるための必要十分条件は、rank(A) = nA が充足階数)となることである。
  • B を任意の n × k 行列として rank(AB) ≤ min(rank(A), rank(B)) が成り立つ。
    • B が行充足階数 n × k 行列ならば rank(AB) = rank(A) が成り立つ。
    • C が列充足階数 l × m 行列ならば rank(CA) = rank(A) が成り立つ。
  • rank(A) = r となるための必要十分条件は、m × m 正則行列 Xn × n 正則行列 Y が存在して カテゴリ



英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「行列の階数」の関連用語

行列の階数のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



行列の階数のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの行列の階数 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS