環の直積とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > 環の直積の意味・解説 

環の直積

(環の直和 から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2015/03/19 09:07 UTC 版)

数学において、いくつかのを1つの大きい直積環積環 (product ring) に合併することができる。これは次のようにされる: I がある添え字集合英語版RiI のすべての i に対して環であれば、カルテジアン積 ΠiI Ri は演算を coordinate-wise に定義することによって環にできる。

得られる環は環 Ri直積 (direct product) と呼ばれる。有限個の環の直積は環の直和 (direct sum) と一致する。

重要な例は整数nとした環 Z/nZ である。n素数のベキの積

ただし pi は相異なる素数、として書かれていれば(算術の基本定理を見よ)、Z/nZ は自然に直積環

同型である。これは中国剰余定理から従う。

性質

R = ΠiI Ri が環の積であれば、すべての iI に対して、i 番目の座標に積を射影する全射環準同型 pi: RRi がある。射影 pi とともに積 R は、以下の普遍性をもっている:

S が任意の環で fi: SRi がすべての iI に対して環準同型であれば、ちょうど1つの環準同型 f: SR が存在してすべての iI に対して pif = fi である。

これは環の積が圏論の意味での積の例であることを示している。しかしながら、I が有限のときには環の直和とも呼ばれるにもかかわらず、環の直積は圏論の意味で余積ではない。とくに、I が1つより多くの元をもっていれば、包含写像 RiR は環準同型ではない、なぜならばそれは Ri の単位元を R の単位元に写さないからだ。

iI に対して AiRiイデアルであれば、A = ΠiI AiR のイデアルである。I が有限であれば、逆が正しい、すなわち R のすべてのイデアルはこの形である。しかしながら、I が無限で環 Ri が 0 でなければ、逆は間違いである。有限個を除いてすべてが 0 でない座標の元全体の集合は Ri たちのイデアルの直積ではないイデアルをなす。Ai の1つを除くすべてが Ri に等しく残りの AiRi の素イデアルであれば、イデアル AR素イデアルである。しかしながら、I が無限のとき逆は正しくない。例えば、Ri直和はどんなそのような A にも含まれないイデアルをなすが、選択公理によって、a fortiori に素イデアルである極大イデアルに含まれる。

R の元 x が単元であることとその component のすべてが単元であることは同値である、すなわち pi(x) がすべての iI に対して Ri の単元であることは同値である。R の単元群は Ri の単元群の直積である。

1 つよりも多い 0 でない環の積は常に零因子をもつ: xpi(x) を除いて座標がすべて 0 の積の元で ypi(x) を除いて座標がすべて 0 の積の元 (ij) であれば、積環において xy = 0 である。

関連項目

脚注

参考文献




英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「環の直積」の関連用語

環の直積のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



環の直積のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの環の直積 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS