木とシャバット多項式
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/10/22 23:33 UTC 版)
「子供のデッサン」の記事における「木とシャバット多項式」の解説
最も簡単な2部グラフは木である。曲面に埋め込まれた木の面の数は1なので、これがデッサンならば、オイラーの公式からこの曲面は球面でなければならない。対応するベールイ対は、リーマン球面からリーマン球面への写像であり、その写像の極を ∞ で持つようにすることにより、この写像を多項式とできる。逆に、0と1を有限な臨界値として持つ任意の多項式は、臨界値 ∞ に対応する臨界点が1点(∞)のみのリーマン球面からそれ自身へのベールイ関数となり、対応する子供のデッサンは木である。多項式の次数は対応する木の辺の数に等しい。このような多項式ベールイ関数は、ジョージ・シャバットにちなんでシャバット多項式(Shabat polynomial)と呼ばれる。 例として、p を単項式 p(x) = xd とする。0がこれの唯一の有限な臨界点であり、その臨界値は0である。1は p の臨界値ではないが、全ての臨界値は {0,1,∞} に含まれているので、p はリーマン球面からそれ自身へのベールイ関数となっている。対応する子供のデッサンは、中心に1つの黒い頂点があり、d 個の白い葉とつながっている星の形(完全2部グラフ K1,d)をしている。 より一般に、多項式 p(x) が2つの臨界値、y1 と y2 を持つだけならば、これもシャバット多項式と呼んでよい。このような多項式は、変換 q ( x ) = p ( x ) − y 1 y 2 − y 1 {\displaystyle q(x)={\frac {p(x)-y_{1}}{y_{2}-y_{1}}}} により臨界値が0と1のベールイ関数に正規化できる。しかし、正規化せず p のままとしたほうが便利なこともある。 シャバット多項式の重要な例は、臨界値として −1 と 1 を持つ第1種チェビシェフ多項式 Tn(x)である。対応する子供のデッサンは、n 個の辺を持ち黒と白の頂点が交互に並んでいる道グラフ(英語版)になる。シャバット多項式とチェビシェフ多項式のこの関係から、シャバット多項式は一般化されたチェビシェフ多項式と言われることもある。 一般に、異なる木は、または同じ木であっても彩色が異なれば、異なるシャバット多項式に対応する。シャバット多項式は、正規化と変数の線形変換による違いを除いて、埋め込まれた木の彩色から一意に決定される。しかし、埋め込まれた木からそれに対応するシャバット多項式を見つけるのは、いつも簡単というわけではない。
※この「木とシャバット多項式」の解説は、「子供のデッサン」の解説の一部です。
「木とシャバット多項式」を含む「子供のデッサン」の記事については、「子供のデッサン」の概要を参照ください。
- 木とシャバット多項式のページへのリンク