指数_(初等整数論)とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > 指数_(初等整数論)の意味・解説 

指数 (初等整数論)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2019/01/17 09:23 UTC 版)

ナビゲーションに移動 検索に移動

初等整数論における指数(しすう、index)は、解析学における指数関数対数関数の概念の類似物である。標数と呼ばれることもある。

定義

互いに素な正の整数 n と整数 a に対して ak ≡ 1 (mod n) なる合同式が成り立つような最小の正の整数 k を、n を法とする a位数(いすう、multiplicative order of a modulo n)と呼び、 ordn (a) や On(a) などと記す。

φ(n) を nオイラー数とするとき、ordn(g) = φ(n) となる整数 g が存在するならば、g の属する法 n の剰余類 g mod nn を法とする原始根(げんしこん、primitive root modulo n)と呼ぶ。すなわち n を法とする原始根とは、n を法とする既約剰余類全体が乗法に関して成す (Z / n Z)×巡回群であるときの、その生成元のことである。

原始根が存在するのは n が 2, 4, pk, 2pk (p は奇素数 kは自然数) の場合に限られる。

g mod n が法 n に関する原始根であるならば、原始根の定義により任意のa mod n ∈ (Z / n Z)× に対して

なる整数 e が φ(n) を法として唯一つ定まる。このときこの e mod φ(n) を、原始根 g mod n(てい、base)とする a mod n指数とよび、Indg(a) と記す。

紛れのおそれが無いならば、これらの定義に現れる剰余類(に関する記述)をその代表元となる整数(に関する記述)であるかのように記す。

性質

以下、g を整数 n を法とする原始根として任意に選んで固定しておく。また、abn とは互いに素であるとする。

  • 定義:
  • ab (mod n) であることと Indg(a) ≡ Indg(b) (mod φ(n)) であることとは同値である。
  • Indg(1) ≡ 0 (mod φ(n))
  • Indg(g) ≡ 1 (mod φ(n))
  • Indg(ab) ≡ Indg(a) + Indg(b) (mod φ(n))
  • Indg(ak) ≡ k * Indg(a) (mod φ(n))

参考文献

  • 高木, 貞治 『初等整数論講義』 共立出版、1971年、第2版。ISBN 978-4320010017

「指数 (初等整数論)」の例文・使い方・用例・文例

Weblio日本語例文用例辞書はプログラムで機械的に例文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「指数_(初等整数論)」の関連用語

指数_(初等整数論)のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



指数_(初等整数論)のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの指数 (初等整数論) (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
Tanaka Corpusのコンテンツは、特に明示されている場合を除いて、次のライセンスに従います:
 Creative Commons Attribution (CC-BY) 2.0 France.
この対訳データはCreative Commons Attribution 3.0 Unportedでライセンスされています。
浜島書店 Catch a Wave
Copyright © 1995-2025 Hamajima Shoten, Publishers. All rights reserved.
株式会社ベネッセコーポレーション株式会社ベネッセコーポレーション
Copyright © Benesse Holdings, Inc. All rights reserved.
研究社研究社
Copyright (c) 1995-2025 Kenkyusha Co., Ltd. All rights reserved.
日本語WordNet日本語WordNet
日本語ワードネット1.1版 (C) 情報通信研究機構, 2009-2010 License All rights reserved.
WordNet 3.0 Copyright 2006 by Princeton University. All rights reserved. License
日外アソシエーツ株式会社日外アソシエーツ株式会社
Copyright (C) 1994- Nichigai Associates, Inc., All rights reserved.
「斎藤和英大辞典」斎藤秀三郎著、日外アソシエーツ辞書編集部編
EDRDGEDRDG
This page uses the JMdict dictionary files. These files are the property of the Electronic Dictionary Research and Development Group, and are used in conformance with the Group's licence.

©2025 GRAS Group, Inc.RSS