強磁性体のキュリー温度
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/03/03 10:12 UTC 版)
「キュリー温度」の記事における「強磁性体のキュリー温度」の解説
主な強磁性体(*はフェリ磁性体)とそのキュリー温度 (Kittel, p. 449.)物質名キュリー温度 (K)Co 1388 Fe 1043 FeOFe2O3* 858 NiOFe2O3* 858 CuOFe2O3* 728 MgOFe2O3* 713 MnBi 630 Ni 627 MnSb 587 MnOFe2O3* 573 Y3Fe5O12* 560 CrO2 386 MnAs 318 Gd 292 Dy 88 EuO 69 強磁性体におけるキュリー温度は、その温度以上では強磁性の性質が失われる温度である。キュリー温度よりも低い温度では磁気モーメントは磁区の内部で部分的に整列している。温度がキュリー温度へと上昇するに伴い、それぞれの磁区内での磁気モーメントの整列(即ち磁化)は減少する。キュリー温度以上では、物質は純粋な常磁性として振る舞い、磁気モーメントが整列した磁区は消失する(消磁)。 キュリー温度以上の温度領域では、磁場を印加すると磁化に常磁性的な反応が現れる。しかし強磁性と常磁性の交じり合った物質では、磁化には印加磁場の強さに応じたヒステリシス曲線が表れる。キュリー温度での磁化の消失は二次相転移であり、理論的に磁化率が無限大に発散する。この困難を解決するためには、臨界指数を用いることができる。 この効果の応用例は記録メディアの一種である光磁気ディスク (MO) である。光磁気ディスクのデータの消去や書き込みにこの磁性体の特性が用いられている。MO以外にも、ソニーのミニディスクや、一般には普及しなかったCD-MOなどにも応用がされている。 他の使用例としては温度制御があり、Weller社のWTCPTのようにはんだごてや、より一般には温度制御が求められる一部の分野で用いられている。
※この「強磁性体のキュリー温度」の解説は、「キュリー温度」の解説の一部です。
「強磁性体のキュリー温度」を含む「キュリー温度」の記事については、「キュリー温度」の概要を参照ください。
- 強磁性体のキュリー温度のページへのリンク