幾何学的な遷移
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/11/28 14:08 UTC 版)
D-ブレーンを持つ構成を関連付ける多くの双対性があって、開弦によって記述することができ、D-ブレーンとフラックスに置き換えたD-ブレーンやブレーンを失った地平線近くの幾何学で幾何学を置き換えたD-ブレーンとの双対性がある。後者は閉弦により記述される。 おそらく、そのような双対性の第一番目はゴパクマール・バッファの双対性で、レジェシュ・ゴパクマール(英語版)とカムラン・ヴァッファにより On the Gauge Theory/Geometry Correspondence で導入された。ゴパクマール・バッファの双対性は変形されたコニフォールド(英語版)上のA-モデルないの3-球面(3-sphere)の上の N 個の D2-ブレーンのスタックを、弦理論の結合定数に N をかけたものに等しいB-場を持つ(特異点の)解消されたコニフォールドの上のA-モデル上の閉弦理論へ関係付ける。A-モデルの開弦の理論は U(N) チャーン・サイモンズ理論により記述され、一方、A-モデルの閉弦理論はケーラー重力により記述される。 コニフォールドは(特異点が)解消されていると言ったが、ブローアップした2-球面(2-sphere)の領域はゼロで、B-場しかない。B-場は領域の複素数部分であると考えられ、消えはしない。事実、チャーン・サイモンズ理論が位相的であるように、変形された3-球面(3-sphere)の体積をゼロへ縮めると、双対理論の中のように同じ幾何学に到達する。 この双対のミラー双対は、もうひとつ別の双対であり、解消されたコニフォールドの中の2-サイクルに巻きつくブレーン上のB-モデルの中の開弦を、変形されたコニフォールド上のB-モデルの中の閉弦に関連付ける。B-モデルの開弦は、開弦が終端を持つブレーン上の正則チャーン・サイモンズ理論の次元簡約によって記述され、一方、B-モデルの閉弦は小平・スペンサー重力により記述される。
※この「幾何学的な遷移」の解説は、「位相的弦理論」の解説の一部です。
「幾何学的な遷移」を含む「位相的弦理論」の記事については、「位相的弦理論」の概要を参照ください。
- 幾何学的な遷移のページへのリンク