A-モデル
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/11/28 14:08 UTC 版)
位相的A-モデルは実次元が6である一般化されたケーラー時空である対象空間から来る。時空がケーラーである場合には、理論は2つの対象を記述する。実次元が2の正則曲線に巻きつく基本弦が存在する。これらの弦の散乱振幅は時空のケーラー形式に依存し、複素構造には依存しない。古典的にはこれらの相関函数はコホモロジー環によって決定される。グロモフ・ウィッテン不変量というこれらを補正する量子力学的なインスタントン(英語版)効果が存在して、量子コホモロジー環と呼ばれる変形されたコホモロジーのカップ積を意味する。閉じた弦のA-モデル位相的弦理論はケーラー重力(英語版)として知られていて、ミカエル・バーシャドスキーとウラジミール・サドフにより Theory of Kahler Gravity で導入された。 加えて、時空のラグランジアン部分多様体を巻くD2-ブレーンが存在する。これらは時空の次元の半分の次元の部分多様体で、部分多様体へのケーラー形式の引き戻し(pull back)はゼロとなるような部分多様体である。N 個のD2-ブレーンの上の世界体積理論は、A-モデルの開弦の位相的弦理論であり、U(N) チャーン・サイモンズ理論である。 位相弦の基本弦はD2-ブレーンに終端を持つ。弦の埋め込みがケーラー形式に依存することに対し、ブレーンの埋め込みは完全に複素構造に依存する。特に、弦がブレーンの上に終端を持つと、交叉はいつでも直交し、ケーラー形式のウェッジ積と正則 3-形式はゼロとなる。物理的な弦では、このことは構成の安定に必要であるが、位相弦の場合はケーラー多様体上のラグラジアンサイクルと正則サイクルの性質である。 ラグラジアン部分多様体である(元の多様体の次元の)半分の次元を持つ部分多様体以外に、コイソトロピック(英語版) と呼ばれるブレーンが様々な次元に存在しているかもしれない。アントン・カプスチンとドミトリィ・オルロフは Remarks on A-Branes, Mirror Symmetry, and the Fukaya Category の中で、このことを最初に指摘した。
※この「A-モデル」の解説は、「位相的弦理論」の解説の一部です。
「A-モデル」を含む「位相的弦理論」の記事については、「位相的弦理論」の概要を参照ください。
- A-モデルのページへのリンク