変形版と一般化
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/02/17 04:16 UTC 版)
一般の位相群に対してもコーシー列は定義できるから、距離構造や完備性の定義および空間の完備化の構成法も、群構造を使ったもので置き換えた変形版を考えることができる。これがよくみられる場面は位相線型空間の文脈だが、必要なのは連続な「減法」の存在のみである。この設定において、二点 x, y の間の距離は必ずしも距離関数 d を通じて実数 ε との比較 d(x, y) < ε で評価される必要は無く、0 の開近傍 N に対して差を通じて x − y ∈ N かどうかが評価できればよい。 これらの定義のよくある一般化は一様空間の文脈において見られ、そこでは互いの間の特定の「距離」というものはもはや考えることなく、近縁 (entourage) は点の対全体の成す集合になる。 また完備性の定義においてコーシー「列」としていたところをコーシー「ネット」やコーシー「フィルター」で置き換えてやることもできる。つまり、空間 X 内の任意のコーシーネット(コーシーフィルター)が極限を持つとき、X は完備であるというのである。あるいはさらに、完備距離空間の完備化を考えるのと同様に、任意の一様空間に対する完備化を構成することもできる。コーシーネットを考えることができる最も一般な状況がコーシー空間であり、そこでも一様空間同様に完備性や完備化を定義することができる。
※この「変形版と一般化」の解説は、「完備距離空間」の解説の一部です。
「変形版と一般化」を含む「完備距離空間」の記事については、「完備距離空間」の概要を参照ください。
- 変形版と一般化のページへのリンク