ポンスレの閉形定理とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > ポンスレの閉形定理の意味・解説 

ポンスレの閉形定理

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2025/01/31 15:27 UTC 版)

n = 3におけるポンスレの閉形定理。2円にそれぞれ内接、外接する三角形は無数にある。

幾何学において、ポンスレの閉形定理(ポンスレのへいけいていり、: Poncelet's closure theorem, Poncelet's porism)または単にポンスレの定理は、二つの円錐曲線にそれぞれ外接英語版内接する多角形が1つでも存在すれば、そのような多角形は無数に存在するという定理である[1][2][3][4][5][6]。1746年、ウィリアム・チャップル が三角形の場合を証明し、1822年、ポンスレが一般の場合を解決した[7][8][9]

主張

C,Dを二つの円錐曲線とする。3以上の整数nについて、あるn角形Cに外接する(多角形の頂点すべてがC上にある)かつDに内接する(多角形のすべてがD接する)ならば、同様にCに外接しDに内接するn角形を無数に見つけることができる[10]CまたはD上の任意の点はそのような多角形の接点になり得る。

C,Dがともにならばこの多角形は双心多角形と呼ばれる。双心多角形はPoncelet's porismの一部である[11]:p. 94

証明の概要

C,D複素射影平面英語版 P2上の曲線として見る。簡単のため、C,Dは単純な交点を持つとする(非特異一般の位置英語版にある)。このときベズーの定理よりC,Dの交点は4つ存在する。点cを通るDの接線dの接点をd(c,d)をもつC×Dの部分代数多様体Xをとする。cCDならばdは1つ、でなければ2つ存在する。したがって射影XC P1は、Xを4点以上で分岐した位数2の自己同型で表す。つまりX楕円曲線である。 (c,d)を同一座標上の点(c,d' )へ移すX対合




英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  
  •  ポンスレの閉形定理のページへのリンク

辞書ショートカット

すべての辞書の索引

「ポンスレの閉形定理」の関連用語

ポンスレの閉形定理のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



ポンスレの閉形定理のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのポンスレの閉形定理 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS