アルティン的な環、加群、両側加群
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/03/29 07:03 UTC 版)
「アルティン加群」の記事における「アルティン的な環、加群、両側加群」の解説
環 R は右からの積で自然に右加群と考えられる。R が右 R-加群としてアルティン的なとき、右アルティン環と呼ばれる。左アルティン環の定義も同様である。非可換環においてこれらの区別は必要である。片側でアルティン的だがもう片側ではアルティン的でない環が存在する。 左右の語は加群において普通必要でない、なぜなら加群 M は通常はじめに左または右 R-加群として与えられるからである。しかしながら、M が左右両方の R-加群としての構造をもつことがあり、そのとき M をアルティン的と呼ぶのは曖昧であるので、どちらの加群としての構造がアルティン的であるのかを明確にする必要が生じる。2つの構造を分離するために、左 R-加群として M がアルティン的であると言うのが正しいときに、用語を濫用して、M を左アルティン的または右アルティン的と言うことができる。 左右両側の加群の構造をもつ加群は珍しいことではない。例えば R 自身は左かつ右 R-加群としての構造をもつ。実はこれは両側加群の例であり、別の環 S によってアーベル群 M を左 R 右 S 両側加群にできるかもしれない。実際、任意の右加群 M は自動的に整数環 Z 上の左加群であり、さらに Z-R 両側加群である。例えば、有理数体 Q を自然に Z-Q 両側加群として考えよ。すると Q は左 Z-加群としてはアルティン的でないが、右 Q-加群としてはアルティン的である。 アルティン条件は両側加群の構造についても定義できる。アルティン両側加群 とは両側加群であって、その部分両側加群が降鎖条件を満たすようなものである。R-S 両側加群 M の部分両側加群は当然左 R-加群なので、もし M が左 R 加群としてアルティン的であれば、M は自動的にアルティン両側加群になる。しかしながら、両側アルティン加群が左または右アルティン加群でないことは、次の例で示すように、起こり得る。 例: 単純環が左アルティン的であることと右アルティン的であることは同値であり、このとき半単純環でもあることはよく知られている。R を右アルティン的でない単純環とすると、左アルティン環でもない。R を自然に R-R-両側加群と考えると、その部分両側加群はちょうど R のイデアルである。R は単純なのでそれは2つしかない。R と零イデアルである。したがって R は両側加群としてアルティン的であるが、左または右 R-加群としてはアルティン的でない。
※この「アルティン的な環、加群、両側加群」の解説は、「アルティン加群」の解説の一部です。
「アルティン的な環、加群、両側加群」を含む「アルティン加群」の記事については、「アルティン加群」の概要を参照ください。
- アルティン的な環、加群、両側加群のページへのリンク