ステンレス鋼 強度・機械的性質

ステンレス鋼

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/04/20 11:56 UTC 版)

強度・機械的性質

ステンレス鋼の機械的性質も、その組織の状態と組成によって様々に変わる[279]。多くの種類のステンレス鋼が存在するように、ステンレス鋼の機械的性質も幅広い[280]。一般に、鉄鋼材料の強度硬度を高める原理には、次の5つがある[281]

固溶強化
添加された元素の原子が材料中に固溶されることにより、母材格子にゆがみが起こり、転位の運動が妨害されて強度が高まる機構[282]
加工硬化
転位強化ともいい、塑性加工によって組織中の転位を意図的に増大させ、転位同士がその運動を妨害することで強度が高まる機構[283]
析出硬化
分散強化ともいい、合金炭化物や金属間化合物の第2相が微細に分散して母相中に析出することで、転位の運動の障害となって強度が高まる機構[284]
粒界強化
細粒化強化ともいい、多結晶体中の結晶粒サイズを小さくすることで強度が高まる機構[285]降伏応力を上昇させ、延性-脆性遷移温度を低くする[286]
マルテンサイト変態による強化
基礎的な強化機構というより、上の4つが重ね合わさった強化機構である[287]。マルテンサイト変態が起きることで、上記4つの強化機構を同時に実現し、高強度化される[287]。特に炭素を過飽和に含有することによる固溶強化が大きい[287]

いずれの強化機構も、塑性変形の基となる転位の運動を妨げることで材質を高強度化させる[53]。ステンレス鋼の強度も、これらの強化機構を基礎とする[53]。一方、材質を高強度化すると、一般的に延性靭性が低下する[288]。延性・靭性が低下すると、材料が破壊されるときに脆性破壊となる[289]。機械・構造物の安全使用の観点からは、強度が高いことだけでなく、靭性が大きいことも望ましい[290]

常温における機械的性質

ステンレス鋼の機械的性質を評価するのに用いられる指標は、0.2%耐力引張強さ伸び絞り硬さ、衝撃強さなどである[291]。これらの内の0.2%耐力、引張強さ、伸びは引張試験で測定できる代表的な材料特性で、0.2%耐力は材料の降伏点を代表する 0.2 % の塑性ひずみを起こす応力を、引張強さは材料の強さを代表する最終的な破断を起こす応力を、伸びは材料の延性を代表する破断までに材料が伸びる変形の程度を表す[292]。常温におけるステンレス鋼の各代表的鋼種の0.2%耐力、引張強さ、伸びの例を下記に示す。

機械的性質の例
大別 鋼種・状態 0.2%耐力
(MPa)
引張強さ
(MPa)
伸び
(%)
出典
オーステナイト系 AISI 304
固溶化熱処理
290 579 55 [293]
AISI 304
圧延率 50 % 冷間加工
1000 1102 10 [294]
フェライト系 AISI 430
焼なまし
345 517 25 [295]
マルテンサイト系 AISI 410
焼入れ・648 °C 焼戻し
586 759 23 [295]
AISI 410
焼入れ・204 °C 焼戻し
1000 1310 15 [295]
オーステナイト・フェライト系 UNS S32205
固溶化熱処理
450 655 25 [296]
析出硬化系 17-4PH
496 °C・4時間時効処理
1207 1310 14 [297]


ステンレス鋼の中で引張強さ 1000 MPa を超える高強度の鋼種には、マルテンサイト系、析出硬化系、加工硬化させたオーステナイト系の3つがある[298]。マルテンサイト系では、焼入れでマルテンサイト組織となり、強く硬い組織となっている[132]。通常は焼入れ後に焼戻しも行い、マルテンサイト系の最終的な機械的性質は焼戻し温度によって変わる[299]。高炭素鋼種 AISI 440C の例では、2000 MPa 近い引張強さを得ることもできる[295]。析出硬化系は、時効処理によって微細第2相を分散析出させる析出硬化機構によって高い強度・硬度を得ている[300]。マルテンサイト系と比較すると、含有炭素量を減らせるので、耐食性や靭性をそれほど落とさずに済む[300]。オーステナイト系は加工硬化度が大きく、さらに準安定オーステナイト系では塑性変形が加わると加工誘起マルテンサイト変態が起こるため、圧延加工を加えることで高強度・高硬度の特性が得られる[301]。加工硬化で高強度化させた後でも十分な延性・靭性を保っているのも、加工硬化させたオーステナイト系の特徴である[302]

フェライト系、オーステナイト系、オーステナイト・フェライト系の3つには、熱処理による硬化性がない[303]。フェイライト系は焼なまし状態で使用され、オーステナイト・フェライト系と加工硬化させない場合のオーステナイト系は固溶化熱処理状態で使用される[304]低炭素鋼と比較すると、フェライト系の降伏応力と引張り強さは少し高めである[305]。フェライト系と比較すると、オーステナイト系は降伏応力が低めで、引張り強さが高めである[306]。オーステナイト・フェライト系の引張強さと降伏応力は、フェイライト系とオーステナイト系よりも高めである[307]。これは、含有元素の影響と、オーステナイト・フェライト系の結晶粒サイズが微細なため起きる粒界強化によるものである[308]。ステンレス鋼の中では、焼きなまし状態のフェライト系のみが応力-ひずみ曲線上で明確な降伏点を示し、他の鋼種は明確な降伏点を示さない[309]

ステンレス鋼の延性・靭性については、オーステナイト系が特に優れている[310]。炭素鋼やフェライト系の伸びが 20–30 % 程度であるのに対し、固溶化熱処理状態のオーステナイト系の伸びは 45–55 % という値を示す[311]。靭性の指標である衝撃強さにおいても、オーステナイト系が優れた値を示す[312]

高温における機械的性質

金属が高温環境下に置かれると、一般的に変形抵抗が低下する[313]。しかし、ステンレス鋼は高温でも比較的高い強度を保つことができ、上述のように高温環境下での耐酸化性や耐食性に優れることから、耐熱用途に幅広く利用される[314]JISでもいくつかのステンレス鋼の鋼種をそのまま耐熱鋼の鋼種として規定しており、ステンレス鋼は耐熱鋼の一種でもある[315][316]

オーステナイト系とフェライト系の2つが、耐熱用に供されるステンレス鋼の主流となっている[317]。代表的な耐熱ステンレス鋼でいえば、常温での降伏応力はオーステナイト系よりもフェライト系の方が高いが、およそ 600 °C 以上の降伏応力はフェライト系よりもオーステナイト系の方が高くなる[317]。そのため、より高温で使用する場合はオーステナイト系が、それ以外ではフェイライト系が重宝される[317]

オーステナイト・フェライト系は、600 °C 以上では、オーステナイト系とフェイライト系の中間的強度を示す[318]。高温強度を向上させる場合、ニオブ窒素ケイ素モリブデンタングステンなどの固溶強化元素の添加が行われる[319]。マルテンサイト系にもモリブデン、バナジウム、タングステンなどの添加で高温強度を高めた鋼種があり、限定的ながらも強度が必要な個所で使用される[320]

低温における機械的性質

一般の炭素鋼と同様に、フェライト系、マルテンサイト系が低温環境に置かれると靭性が低下し、脆性破壊を起こすようになる[321]。靭性が著しく低下する温度を延性-脆性遷移温度といい、フェライト系 430 の例では、室温から約 −70 °C までの間で衝撃強さが急激に低下する[322]。しかし、オーステナイト系はこのような低温時にも高い靭性を保つ[323]。鋼種にもよるが、オーステナイト系は −200 °C 以下の極低温でも使用できる[324]。オーステナイト・フェライト系は、低温時に脆性破壊を起こすが、フェライト系よりは延性-脆性遷移が緩やかに起きる傾向にある[325]


  1. ^ a b c d 小林 裕、2013、「特集/エネルギー・インフラ技術を支えるステンレス鋼 II. ステンレス鋼の種類、性質と適用状況 ステンレス鋼とは何か」、『特殊鋼』62巻6号、特殊鋼倶楽部、2013年11月 pp. 6–7
  2. ^ a b 野原 2016, p. 25.
  3. ^ 遅沢 2009, p. 5; 平松(監修) 2005, p. 9.
  4. ^ 平松(監修) 2005, p. 9; 橋本 2007, p. 152.
  5. ^ Chapter 72 Iron and steel”. HS Nomenclature 2017 edition. World Customs Organization. 2020年9月28日閲覧。
  6. ^ ISO 15510: 2014, Stainless steels — Chemical composition
  7. ^ a b JIS G 0203:2009「鉄鋼用語(製品及び品質)」日本産業標準調査会経済産業省) pp. 19–20
  8. ^ Peckner & Bernstein (ed) 1977, p. 1-1; 野原 2016, p. 95; 平松(監修) 2005, p. 9.
  9. ^ a b c 平松(監修) 2005, p. 10.
  10. ^ ステンレスとは”. ステンレス協会. 2020年3月28日閲覧。
  11. ^ 野原 2016, p. 15; 遅沢 2009, p. 5.
  12. ^ a b ジョナサン・ウォルドマン、三木 直子(訳)、2016、『錆と人間 : ビール缶から戦艦まで』初版、築地書館 ISBN 978-4-8067-1521-4 p. 78
  13. ^ a b The Discovery of Stainless Steel”. British Stainless Steel Association. 2020年3月28日閲覧。
  14. ^ ブリタニカ国際大百科事典 小項目事典の解説”. コトバンク. Britannica Japan Co., Ltd.. 2019年11月11日閲覧。
  15. ^ 大山・森田・吉武 1990, pp. 1–2.
  16. ^ 『ステンとサス』”. 夢通信平成16年1月号. 衣川製鎖工業. 2020年3月28日閲覧。
  17. ^ 大山・森田・吉武 1990, pp. 3–6; Cobb 2010, pp. 7–8.
  18. ^ 大山・森田・吉武 1990, pp. 6&dash, 8.
  19. ^ 野原 2016, p. 15; 大山・森田・吉武 1990, pp. 9–10; 田中(編) 2010, p. 17; 鈴木 2000, p. 55.
  20. ^ 田中(編) 2010, p. 18; 大山・森田・吉武 1990, p. 8; 野原 2016, p. 15; 鈴木 2000, p. 55.
  21. ^ a b 遅沢 浩一郎、2011、「講座:ステンレス鋼活用の基礎知識 ―歴史、特性、耐食性― 1.ステンレス鋼の歴史と製造」、『材料』60巻7号、日本材料学会、doi:10.2472/jsms.60.680 p. 681
  22. ^ 鈴木 2000, p. 98.
  23. ^ 大山・森田・吉武 1990; 野原 2016, p. 9; 田中(編) 2010, p. 15; Cobb 2010, p. 18.
  24. ^ Cobb 2010, p. 8.
  25. ^ 菊池 2015, p. 37.
  26. ^ a b 鈴木 2000, p. i.
  27. ^ 鈴木 2000, pp. 128–129, 139–140.
  28. ^ 田中(編) 2010, p. 20; ステンレス協会(編) 1995; Cobb 2010, p. 752; 大山・森田・吉武 1990, p. 309.
  29. ^ a b ISSF 2020, p. 3.
  30. ^ 菊池 2015, p. 43; 大山・森田・吉武 1990, p. 14.
  31. ^ 遅沢 2009, p. 6; 田中(編) 2010, p. 95.
  32. ^ 大山・森田・吉武 1990, p. 94; ステンレス協会(編) 1995, p. 770.
  33. ^ a b 大山・森田・吉武 1990, p. 94.
  34. ^ 佐藤 昌男、2015、「5.ステンレス鋼」、『特殊鋼』64巻3号、特殊鋼倶楽部、2015年5月 p. 22
  35. ^ a b Pierre-Jean Cunat (2004年). “Alloying Elements in Stainless Steel and Other Chromium-Containing Alloys”. Euro Inox (in cooperation with the International Chromium Development Association). p. 4. 2020年4月25日閲覧。
  36. ^ 谷野・鈴木 2013, p. 79.
  37. ^ Lai et al.(ed) 2012, p. 4.
  38. ^ 野原 2016, p. 46.
  39. ^ 野原 2016, p. 41.
  40. ^ 平松 博之(監修). “ものづくりの原点 科学の世界VOL.23 錆に負けない鋼 ステンレス鋼(下)”. Nippon Steel. Nippon Steel Monthly 2005年12月号 Vol.154. 新日本製鐵. p. 14. 2020年9月20日閲覧。
  41. ^ 遅沢 2009, p. 8.
  42. ^ 徳田・山田・片桐 2005, pp. 152–155.
  43. ^ 日本熱処理技術協会(編)、2013、『熱処理ガイドブック』4版、大河出版 ISBN 978-4-88661-811-5 p. 11
  44. ^ 大和久 重雄、2008、『熱処理技術マニュアル』増補改訂版、日本規格協会 ISBN 978-4-542-30391-1 p. 285
  45. ^ Peckner & Bernstein (ed) 1977, p. 1-2.
  46. ^ 金子・須藤・菅又 2004, pp. 108–111.
  47. ^ a b Lai et al.(ed) 2012, p. 10.
  48. ^ a b 野原 2016, p. 53; 谷野・鈴木 2013, p. 103; ステンレス協会(編) 1995, p. 100.
  49. ^ 谷野・鈴木 2013, pp. 102–103.
  50. ^ 野原 2016, p. 48.
  51. ^ a b ステンレス協会(編) 1995, p. 98.
  52. ^ a b 橋本 2007, p. 154.
  53. ^ a b c d 高橋 茉莉、2013、「特集/エネルギー・インフラ技術を支えるステンレス鋼 II. ステンレス鋼の種類、性質と適用状況 4. 高強度ステンレス鋼」、『特殊鋼』62巻6号、特殊鋼倶楽部、2013年11月 p. 15
  54. ^ a b 谷野・鈴木 2013, p. 103.
  55. ^ ステンレス協会(編) 1995, p. 110.
  56. ^ Lai et al.(ed) 2012, p. 9.
  57. ^ 野原 2016, p. 49; 田中(編) 2010, p. 99.
  58. ^ 大和久 重雄、2003、『鋼のおはなし』訂正版、日本規格協会〈おはなし科学・技術シリーズ〉 ISBN 978-4-542-90117-9 pp. 185–186
  59. ^ a b c d e ステンレス協会(編) 1995, p. 38.
  60. ^ a b ステンレス協会(編) 1995, p. 557; 野原 2016, pp. 53–54.
  61. ^ 正橋 直哉 (2012年). “ものづくり基礎講座 金属の魅力をみなおそう 第五回 ステンレス”. http://polar.imr.tohoku.ac.jp/archives.html. p. 8. 2020年4月30日閲覧。
  62. ^ 田中(編) 2010, pp. 106–107; Lai et al.(ed) 2012, p. 55.
  63. ^ 田中(編) 2010, p. 95.
  64. ^ ステンレス協会(編) 1995, p. 485.
  65. ^ 橋本 2007, p. 152.
  66. ^ a b ステンレス協会(編) 1995, p. 1515.
  67. ^ a b 大山・森田・吉武 1990, p. 25; 田中(編) 2010, pp. 24, 26.
  68. ^ a b c 野原 2016, p. 17.
  69. ^ a b 鈴木 2011, p. 957.
  70. ^ ステンレス協会(編) 1995, p. 485; 野原 2016, p. 16.
  71. ^ How many types of stainless steel are there?”. British Stainless Steel Association. 2020年4月19日閲覧。
  72. ^ 遅沢 2009, p. 6.
  73. ^ 田中(編) 2010, p. 24; 野原 2016, p. 51.
  74. ^ 田中(編) 2010, p. 154.
  75. ^ 谷野・鈴木 2013, p. 241.
  76. ^ 大山・森田・吉武 1990, pp. 145–146.
  77. ^ 田中(編) 2010, p. 153.
  78. ^ Peckner & Bernstein (ed) 1977, p. 5-2.
  79. ^ 遅沢 2009; 田中(編) 2010.
  80. ^ Peckner & Bernstein (ed) 1977, p. 5-1.
  81. ^ 田中(編) 2010, pp. 24–25.
  82. ^ 大山・森田・吉武 1990, p. 32; ステンレス協会(編) 1995, p. 499.
  83. ^ LowC、Nフェライト系ステンレスの特長について”. ステンレス協会. 2020年5月4日閲覧。
  84. ^ Peckner & Bernstein (ed) 1977, p. 1-6.
  85. ^ 徳田・山田・片桐 2005, p. 160.
  86. ^ 大山・森田・吉武 1990, p. 33; 杉本 2009, p. 145; 野原 2016, p. 143.
  87. ^ 田中(編) 2010, p. 26; 大山・森田・吉武 1990, p. 25.
  88. ^ "18-8ステンレス鋼". 世界大百科事典. コトバンクより2020年8月1日閲覧
  89. ^ 種類”. ステンレス協会. 2020年5月3日閲覧。
  90. ^ ステンレス協会(編) 1995, p. 554; Lai et al.(ed) 2012, p. 23.
  91. ^ ステンレス協会(編) 1995, pp. 113–114.
  92. ^ Lai et al.(ed) 2012, p. 27.
  93. ^ 田中(編) 2010, pp. 106–107.
  94. ^ 谷野・鈴木 2013, p. 243.
  95. ^ a b 田中(編) 2010, p. 28.
  96. ^ IMOA 2014, pp. 8, 10.
  97. ^ IMOA 2014, p. 10.
  98. ^ Lai et al.(ed) 2012, p. 64.
  99. ^ ステンレス協会(編) 1995, pp. 640–641.
  100. ^ 横田 孝三・江波戸 和男、1971、「析出硬化型ステンレス鋼」、『日本金属学会会報』10巻4号、日本金属学会、doi:10.2320/materia1962.10.226 pp. 235–236
  101. ^ Peckner & Bernstein (ed) 1977, pp. 7–5, 7–6.
  102. ^ ステンレス協会(編) 1995, p. 642.
  103. ^ 田中(編) 2010, p. 111.
  104. ^ ステンレス協会(編) 1995, p. 1515; 橋本 2007, p. 44.
  105. ^ Stainless steel grades listed in the international standard ISO 15510:2010”. International Stainless Steel Forum (2019年11月15日). 2020年9月6日閲覧。
  106. ^ Cobb 2010, p. 244.
  107. ^ Peckner & Bernstein (ed) 1977, pp. 1–6, 1–7.
  108. ^ Cobb 2010, p. 30.
  109. ^ Cobb 2010, p. 246.
  110. ^ Cobb 2010, p. 250.
  111. ^ Cobb 2010, pp. 245–246.
  112. ^ a b Chemical compositions of AISI (ASTM/ASME) and UNS austenitic stainless steel grades”. British Stainless Steel Association. 2020年5月6日閲覧。
  113. ^ Cobb 2010, pp. 238–239.
  114. ^ a b 吉田 裕志、2013、「特集/グローバルに考える特殊鋼の規格 II.特殊鋼の海外規格 2. ステンレス鋼」、『特殊鋼』62巻3号、特殊鋼倶楽部、2013年5月 pp. 17–18
  115. ^ 金属材料記号対照表”. 三菱マテリアル. 2020年5月6日閲覧。
  116. ^ 外国規格との比較”. ステンレス協会. 2020年5月6日閲覧。
  117. ^ Equivalent Materials to AISI 304”. Equivalent Materials. 2020年5月6日閲覧。
  118. ^ Cobb 2010, p. 245.
  119. ^ 田中(編) 2010, p. 36.
  120. ^ 野原 2016, p. 24.
  121. ^ a b JIS G 5121:2003「ステンレス鋼鋳鋼品」日本産業標準調査会経済産業省) p. 2
  122. ^ JIS G 4316:1991「溶接用ステンレス鋼線材」日本産業標準調査会経済産業省) p. 2
  123. ^ a b c d 田中(編) 2010, pp. 38–39.
  124. ^ 田中(編) 2010, pp. 44–67.
  125. ^ JIS G 4303:2012「ステンレス鋼棒」日本産業標準調査会経済産業省) p. 2
  126. ^ JIS G 4304:2012「熱間圧延ステンレス鋼板及び鋼帯」日本産業標準調査会経済産業省) p. 2
  127. ^ a b c Peckner & Bernstein (ed) 1977, p. 15-2.
  128. ^ a b c 橋本 2007, p. 284.
  129. ^ a b 梶村 2011, p. 862.
  130. ^ International Stainless Steel Forum、ステンレス協会(訳)、2007、『フェライト系ソリューション』  ISBN 2-930069-51-1 p. 21
  131. ^ 梶村 2011, pp. 863–864.
  132. ^ a b c 大山・森田・吉武 1990, p. 28.
  133. ^ a b c 杉本 2009, p. 7; 野原 2016, p. 91.
  134. ^ a b c 松島 2007, p. 10.
  135. ^ 杉本 2009, p. 7.
  136. ^ a b 杉本 2009, p. 5.
  137. ^ 松島 2007, pp. 10–11.
  138. ^ 大山・森田・吉武 1990, p. 48.
  139. ^ 杉本 2009, pp. 80, 107.
  140. ^ a b 杉本 2009, p. 80.
  141. ^ a b 橋本 2007, pp. 184–185.
  142. ^ a b c 梶村 2011, p. 863.
  143. ^ 佐藤 教男、1986、「不働態の歴史」、『金属表面技術』37巻8号、表面技術協会、doi:10.4139/sfj1950.37.388 pp. 390–391
  144. ^ 杉本 2009, p. 107.
  145. ^ a b ステンレス協会(編) 1995, p. 252.
  146. ^ 田中(編) 2010, p. 116.
  147. ^ 杉本 2009, pp. 107–108.
  148. ^ a b Peckner & Bernstein (ed) 1977, p. 16-2.
  149. ^ a b 杉本 2009, p. 81.
  150. ^ a b 杉本 2009, pp. 81–82.
  151. ^ a b 野原 2016, pp. 94–95; 田中(編) 2010, p. 117.
  152. ^ a b c d 大山・森田・吉武 1990, p. 49.
  153. ^ 平松(監修) 2005, p. 9.
  154. ^ Wang, R., Li, Y., Xiao, T. et al. Using Atomic Force Microscopy to Measure Thickness of Passive Film on Stainless Steel Immersed in Aqueous Solution. Sci Rep 9, 13094 (2019). https://doi.org/10.1038/s41598-019-49747-0
  155. ^ a b 野原 2016, p. 96.
  156. ^ a b c d e f 佐藤 眞直・藤本 慎司「放射光を用いたステンレス鋼不動態皮膜の構造解析」『材料と環境』第57巻第6号、腐食防食学会、2008年、250頁、doi:10.3323/jcorr.57.250 
  157. ^ 原 2016, p. 207.
  158. ^ 遅沢 2009, p. 12.
  159. ^ 原 2016, p. 207; 田中(編) 2010, p. 117.
  160. ^ ステンレス協会(編) 1995, p. 262.
  161. ^ 大山・森田・吉武 1990, p. 48; 橋本 2007, p. 187.
  162. ^ 杉本 2009, p. 117.
  163. ^ a b 松島 2007, pp. 17–18.
  164. ^ Peckner & Bernstein (ed) 1977, p. 16-6.
  165. ^ 野原 2016, p. 91.
  166. ^ Peckner & Bernstein (ed) 1977, p. 16-7.
  167. ^ a b 橋本 2007, p. 197.
  168. ^ 遅沢 2009, p. 12; 梶村 2011, p. 865.
  169. ^ 杉本 2009, p. 123.
  170. ^ a b c 田中(編) 2010, p. 120.
  171. ^ a b 大山・森田・吉武 1990, p. 52.
  172. ^ a b c 大山・森田・吉武 1990, p. 51.
  173. ^ a b c 橋本 2007, p. 198.
  174. ^ 橋本 2007, p. 198; ステンレス協会(編) 1995, p. 1188.
  175. ^ 大山・森田・吉武 1990, pp. 51–52.
  176. ^ a b ステンレス協会(編) 1995, p. 1181.
  177. ^ 田中(編) 2010, p. 252.
  178. ^ 田中(編) 2010, p. 253.
  179. ^ ステンレス協会(編) 1995, p. 489.
  180. ^ 橋本 2007, p. 199.
  181. ^ 田中(編) 2010, p. 254.
  182. ^ a b 大山・森田・吉武 1990, p. 54.
  183. ^ Yongqiang Wanga, Hao Suna, Junliang Lia, Dandan Lia & Na Lib (2019). “Pitting Corrosion of Thermally Aged Duplex Stainless Steels at Different Temperature for Long Time”. Materials Research (São Carlos) 22 (6). doi:10.1590/1980-5373-mr-2018-0663. ISSN 1980-5373. 
  184. ^ 松島 2007, p. 21.
  185. ^ 原 2016, p. 209; 杉本 2009, p. 183.
  186. ^ 杉本 2009, p. 173; 橋本 2007, p. 190.
  187. ^ a b c d e 田中(編) 2010, p. 122.
  188. ^ 杉本 2009, p. 177.
  189. ^ a b 梶村 2011, p. 866.
  190. ^ 梶村 2011, p. 866; Lai et al.(ed) 2012, p. 116.
  191. ^ a b 遅沢 2009, p. 13; Lai et al.(ed) 2012, p. 116.
  192. ^ a b 遅沢 2009, p. 13.
  193. ^ ステンレス協会(編) 1995, p. 328.
  194. ^ Shi, W., Yang, S. & Li, J. Correlation between evolution of inclusions and pitting corrosion in 304 stainless steel with yttrium addition. Sci Rep 8, 4830 (2018). https://doi.org/10.1038/s41598-018-23273-x
  195. ^ 杉本 2009, p. 178.
  196. ^ 原 2016, p. 209.
  197. ^ 原 2016, pp. 212–213.
  198. ^ 田中(編) 2010, p. 123.
  199. ^ 松島 2007, p. 15.
  200. ^ 橋本 2007, p. 190; 田中(編) 2010, p. 122.
  201. ^ 梶村 2011, p. 865; 野原 2016, p. 100.
  202. ^ 野原 2016, p. 100.
  203. ^ a b 大山・森田・吉武 1990, p. 62.
  204. ^ a b 杉本 2009, p. 189.
  205. ^ a b ステンレス協会(編) 1995, p. 276.
  206. ^ a b c 橋本 2007, p. 192.
  207. ^ 杉本 2009, p. 189; 田中(編) 2010, p. 121.
  208. ^ 向井 1999, p. 70.
  209. ^ a b c 杉本 2009, p. 190.
  210. ^ ステンレス協会(編) 1995, p. 281.
  211. ^ 野原 2016, p. 98.
  212. ^ 大山・森田・吉武 1990, pp. 55, 57; 田中(編) 2010, pp. 104–105, 122.
  213. ^ 梶村 2011, pp. 864, 866.
  214. ^ 向井 1999, p. 42.
  215. ^ a b 松島 2007, pp. 89–90; 梶村 2011, p. 866.
  216. ^ a b 向井 1999, p. 74.
  217. ^ Henrique Boschetti Pereiraa, Zehbour Panossiana, Ilson Palmieri Baptistab, & Cesar Roberto de Farias Azevedoc (January 2019). “Investigation of Stress Corrosion Cracking of Austenitic, Duplex and Super Duplex Stainless Steels under Drop Evaporation Test using Synthetic Seawater”. Materials Research 22 (2). doi:10.1590/1980-5373-mr-2018-0211. ISSN 1980-5373. 
  218. ^ 橋本 2007, p. 194.
  219. ^ 松島 2007, p. 47.
  220. ^ 杉本 2009, p. 198.
  221. ^ 金子・須藤・菅又 2004, p. 79; 松島 2007, p. 49.
  222. ^ 大路 清嗣・中井 善一『材料強度』(第1版)コロナ社、2010年、151頁。ISBN 978-4-339-04039-5 
  223. ^ 徳田・山田・片桐 2005, p. 118.
  224. ^ 橋本 2007, p. 195.
  225. ^ Peckner & Bernstein (ed) 1977, p. 16-84.
  226. ^ 田中(編) 2010, p. 124.
  227. ^ 梶村 2011, p. 867.
  228. ^ 野原 2016, pp. 102–103.
  229. ^ ステンレス協会(編) 1995, p. 269; Outokumpu 2013, p. 39.
  230. ^ 大山・森田・吉武 1990, p. 65.
  231. ^ 野原 2016, p. 103; IMOA 2014, p. 17.
  232. ^ 野原 2016, p. 103.
  233. ^ 大山・森田・吉武 1990, p. 64.
  234. ^ 大山・森田・吉武 1990, p. 64; Peckner & Bernstein (ed) 1977, p. 16-84.
  235. ^ 杉本 2009, p. 198; 金子・須藤・菅又 2004, p. 80.
  236. ^ a b c 大村 朋彦・中村 潤、2011、「ステンレス鋼の水素脆性」、『Zairyo-to-Kankyo』60巻5号、腐食防食学会、doi:10.3323/jcorr.60.241 pp. 241, 246
  237. ^ a b 南雲 道彦、2010、「オーステナイト系ステンレス鋼の水素脆性」、『圧力技術』48巻3号、日本高圧力技術協会、doi:10.11181/hpi.48.154 pp. 154, 163
  238. ^ ステンレス協会(編) 1995, p. 296; 松島 2007, pp. 28–29.
  239. ^ ステンレス協会(編) 1995, p. 297; 松島 2007, pp. 28–29.
  240. ^ a b ステンレス協会(編) 1995, p. 297.
  241. ^ Peckner & Bernstein (ed) 1977, p. 16-87.
  242. ^ ステンレス協会(編) 1995, p. 487.
  243. ^ 田中(編) 2010, pp. 127–128; 菊池 2014, p. 11.
  244. ^ a b Dong, N., Zhang, C., Li, H. et al. A combined experimental and first-principle study on the oxidation mechanism of super austenitic stainless steel S32654 at 900 °C. Sci Rep 7, 871 (2017). https://doi.org/10.1038/s41598-017-00903-4
  245. ^ a b c 大山・森田・吉武 1990, p. 66.
  246. ^ 菊池 2014, p. 11; 松島 2007, p. 159.
  247. ^ 菊池 2014, p. 11; 大山・森田・吉武 1990, p. 66.
  248. ^ 橋本 2007, p. 200; 菊池 2014, p. 14.
  249. ^ a b 藤井 哲雄(監修)、2017、『錆・腐食・防食のすべてがわかる事典』初版、ナツメ社 ISBN 978-4-8163-6243-9 pp. 122–126
  250. ^ 菊池 2014, p. 11.
  251. ^ a b c 菊池 2014, p. 12.
  252. ^ 田中(編) 2010, p. 128; 橋本 2007, p. 201.
  253. ^ ステンレス協会(編) 1995, p. 375.
  254. ^ ステンレス協会(編) 1995, p. 379.
  255. ^ 菊池 2014, pp. 13–14.
  256. ^ ステンレス協会(編) 1995, p. 376.
  257. ^ 菊池 2014, p. 14; ステンレス協会(編) 1995, pp. 376–377.
  258. ^ a b c d ステンレス協会(編) 1995, p. 375; 菊池 2014, p. 14.
  259. ^ 谷野・鈴木 2013, p. 222; ステンレス協会(編) 1995, p. 375; 菊池 2014, p. 14.
  260. ^ 野原 2016, p. 107.
  261. ^ 田中(編) 2010, p. 130.
  262. ^ 田中(編) 2010, p. 132; 野原 2016, p. 107.
  263. ^ ステンレス協会(編) 1995, p. 387; 田中(編) 2010, pp. 132–133.
  264. ^ ステンレス協会(編) 1995, p. 389; 菊池 2014, p. 15.
  265. ^ 大山・森田・吉武 1990, p. 67.
  266. ^ ステンレス協会(編) 1995, p. 390.
  267. ^ 橋本 2007, p. 202; 菊池 2014, p. 16.
  268. ^ 大山・森田・吉武 1990, pp. 67–68.
  269. ^ 谷野・鈴木 2013, pp. 223–224.
  270. ^ ステンレス協会(編) 1995, p. 487; 田中(編) 2010, p. 133; 菊池 2014, p. 16.
  271. ^ ステンレス協会(編) 1995, p. 406.
  272. ^ 田中(編) 2010, p. 137; 橋本 2007, p. 202; ステンレス協会(編) 1995, pp. 407–408.
  273. ^ 大山・森田・吉武 1990, p. 68; 菊池 2014, p. 17.
  274. ^ 田中(編) 2010, pp. 135–136.
  275. ^ 大山・森田・吉武 1990, p. 69; 菊池 2014, p. 17.
  276. ^ 大山・森田・吉武 1990, p. 69.
  277. ^ 田中(編) 2010, p. 138.
  278. ^ 菊池 2014, p. 18.
  279. ^ 田中(編) 2010, p. 147.
  280. ^ Peckner & Bernstein (ed) 1977, p. 20-15.
  281. ^ 谷野・鈴木 2013, p. 117; 牧 2015, pp. 109–116, 120–122; ステンレス協会(編) 1995, pp. 165–167.
  282. ^ 谷野・鈴木 2013, pp. 118–119.
  283. ^ 牧 2015, pp. 111–112; ステンレス協会(編) 1995, pp. 166–167.
  284. ^ ステンレス協会(編) 1995, p. 165.
  285. ^ 牧 2015, pp. 112–114.
  286. ^ 谷野・鈴木 2013, pp. 135–136.
  287. ^ a b c 牧 2015, p. 120.
  288. ^ 牧 2015, p. 123.
  289. ^ 徳田・山田・片桐 2005, p. 102.
  290. ^ 金子・須藤・菅又 2004, p. 65.
  291. ^ 大山・森田・吉武 1990, pp. 74–75.
  292. ^ 金子・須藤・菅又 2004, pp. 44, 86–87.
  293. ^ Peckner & Bernstein (ed) 1977, p. 20-26.
  294. ^ Peckner & Bernstein (ed) 1977, p. 20-28.
  295. ^ a b c d Peckner & Bernstein (ed) 1977, p. 20-18.
  296. ^ IMOA 2014, p. 26.
  297. ^ Peckner & Bernstein (ed) 1977, p. 7-14.
  298. ^ ステンレス協会(編) 1995, pp. 493–494; 鈴木 2011, pp. 958–959.
  299. ^ 橋本 2007, p. 165.
  300. ^ a b ステンレス協会(編) 1995, p. 170.
  301. ^ 田中(編) 2010, p. 150.
  302. ^ 田中(編) 2010, p. 150; Peckner & Bernstein (ed) 1977, p. 20-25.
  303. ^ 遅沢 2009, p. 11.
  304. ^ 橋本 2007, pp. 165–166; 遅沢 2009, p. 11.
  305. ^ Peckner & Bernstein (ed) 1977, p. 20-22.
  306. ^ 田中(編) 2010, p. 148.
  307. ^ 田中(編) 2010, p. 156.
  308. ^ Iris Alvarez-Armas (2008). “Duplex Stainless Steels: Brief History and Some Recent Alloys”. Recent Patents on Mechanical Engineering (Bentham Science Publishers) 1 (1): 54. doi:10.2174/2212797610801010051. 
    阿部 雅之・日裏 昭・石田 清仁・西沢 泰二、1984、「二相ステンレス鋼の結晶粒成長」、『鉄と鋼』70巻15号、日本鉄鋼協会、1984年3月、doi:10.2355/tetsutohagane1955.70.15_2025 pp. 2025–2032
    溝口 太一朗、2018、「特集/特殊鋼のミクロ組織のやさしい解説 7.ステンレス」、『特殊鋼』67巻2号、特殊鋼倶楽部、2018年3月 p. 41
  309. ^ ステンレス協会(編) 1995, p. 175.
  310. ^ 野原 2016, p. 34.
  311. ^ 橋本 2007, pp. 166, 167, 169.
  312. ^ Peckner & Bernstein (ed) 1977, p. 20-31.
  313. ^ ステンレス協会(編) 1995, p. 204.
  314. ^ 田中(編) 2010, p. 161; 菊池 2014, p. 11.
  315. ^ 門間 改三『機械材料』(SI単位版)実教出版〈大学基礎〉、1993年、123頁。ISBN 978-4-407-02328-2 
  316. ^ ステンレスと耐熱鋼の違いについて”. ステンレス協会. 2020年9月29日閲覧。
  317. ^ a b c 西山 佳孝、2013、「特集/エネルギー・インフラ技術を支えるステンレス鋼 II. ステンレス鋼の種類、性質と適用状況 3. 耐熱ステンレス鋼」、『特殊鋼』62巻6号、特殊鋼倶楽部、2013年11月 p. 12
  318. ^ ステンレス協会(編) 1995, p. 207.
  319. ^ 鈴木 2011, p. 958.
  320. ^ 大山・森田・吉武 1990, p. 86.
  321. ^ ステンレス協会(編) 1995, p. 494; 橋本 2007, p. 177.
  322. ^ Peckner & Bernstein (ed) 1977, p. 20-2.
  323. ^ Peckner & Bernstein (ed) 1977, p. 20-3.
  324. ^ 谷野・鈴木 2013, p. 212.
  325. ^ ステンレス協会(編) 1995, p. 494; IMOA 2014, p. 27.
  326. ^ 遅沢 2009, p. 8; 田中(編) 2010, p. 167.
  327. ^ a b c d e f 田中(編) 2010, p. 167.
  328. ^ IMOA 2014, p. 29; ステンレス協会(編) 1995, p. 634.
  329. ^ a b c d 田中(編) 2010, p. 168.
  330. ^ IMOA 2014, pp. 29–30.
  331. ^ 野原 2016, pp. 87, 89; 田中(編) 2010, p. 167.
  332. ^ a b Outokumpu 2013, p. 54.
  333. ^ 野原 2016, p. 89.
  334. ^ a b 田中(編) 2010, p. 169.
  335. ^ 大山・森田・吉武 1990, p. 71.
  336. ^ Outokumpu 2013, p. 55.
  337. ^ ステンレス協会(編) 1995, p. 147.
  338. ^ a b 田中(編) 2010, pp. 169–170.
  339. ^ 橋本 2007, pp. 159–160.
  340. ^ a b 田中(編) 2010, p. 170.
  341. ^ 大山・森田・吉武 1990, p. 72.
  342. ^ 橋本 2007, p. 161; 野原 2016, p. 89.
  343. ^ Outokumpu 2013, p. 54; 野原 2016, pp. 89–90.
  344. ^ 谷野・鈴木 2013, pp. 247–248, 254.
  345. ^ 谷野・鈴木 2013, pp. 254–255.
  346. ^ ステンレス協会(編) 1995, p. 150.
  347. ^ 田中(編) 2010, p. 171.
  348. ^ 橋本 2007, p. 178.
  349. ^ ステンレス協会(編) 1995, pp. 1429–1430.
  350. ^ 田中(編) 2010, p. 70.
  351. ^ 橋本 2007, pp. 212, 214.
  352. ^ a b ステンレス協会(編) 1995, p. 754.
  353. ^ a b c 製造工程の流れ”. ステンレス協会. 2017年10月22日閲覧。
  354. ^ a b c d e 野原 2016, p. 26.
  355. ^ a b c d リサイクルが容易なステンレス鋼”. ステンレス協会. pp. 1–4. 2020年8月13日閲覧。
  356. ^ a b c 橋本 2007, p. 310.
  357. ^ a b c 池田 聡、2009、「ステンレス鋼の製造技術進歩と今後の展望」、『新日鉄技報』(389号)、新日鉄住金 p. 3
  358. ^ ステンレス協会(編) 1995, p. 767.
  359. ^ Outokumpu 2013, p. 24.
  360. ^ a b 野原 2016, p. 26; 田中(編) 2010, p. 72.
  361. ^ a b 橋本 2007, p. 220.
  362. ^ 大山・森田・吉武 1990, p. 92.
  363. ^ Outokumpu 2013, p. 25; 佐藤 2015, p. 22.
  364. ^ Outokumpu 2013, p. 25.
  365. ^ 大山・森田・吉武 1990, p. 94; Outokumpu 2013, p. 25.
  366. ^ 橋本 2007, p. 219; 大山・森田・吉武 1990, p. 116.
  367. ^ ステンレス協会(編) 1995, p. 760.
  368. ^ 大山・森田・吉武 1990, p. 93.
  369. ^ a b c d e 佐藤 2015, p. 22.
  370. ^ 大山・森田・吉武 1990, p. 94; ステンレス協会(編) 1995, p. 752.
  371. ^ ステンレス協会(編) 1995, p. 752.
  372. ^ a b 野原 2016, p. 27.
  373. ^ 野原 2016, p. 27; 田中(編) 2010, p. 72.
  374. ^ a b ステンレス協会(編) 1995, p. 753; 佐藤 2015, p. 22.
  375. ^ 佐藤 2015, pp. 22–23.
  376. ^ ステンレス協会(編) 1995, pp. 798–815; 佐藤 2015, p. 23.
  377. ^ a b 金子 智・田中 博孝、1995、「ステンレス鋼の脱炭法と材質改善」、『Zairyo-to-Kankyo』44巻1号、社団法人腐食防食協会、doi:10.3323/jcorr1991.44.49 p. 50
  378. ^ 橋本 2007, p. 219; 田中(編) 2010, p. 71.
  379. ^ 野原 2016, p. 26; 大山・森田・吉武 1990, p. 94.
  380. ^ ステンレス協会(編) 1995, p. 775.
  381. ^ 田中(編) 2010, pp. 72–73.
  382. ^ a b 大山・森田・吉武 1990, pp. 97–98.
  383. ^ 大山・森田・吉武 1990, p. 96.
  384. ^ 大山・森田・吉武 1990, p. 96; 橋本 2007, pp. 221–223.
  385. ^ 野原 2016, pp. 27–28.
  386. ^ 橋本 2007, pp. 221–222.
  387. ^ 野原 2016, p. 28; ステンレス協会(編) 1995, p. 816.
  388. ^ ステンレス協会(編) 1995, pp. 816, 827.
  389. ^ 橋本 2007, p. 221; ステンレス協会(編) 1995, p. 816.
  390. ^ ステンレス協会(編) 1995, p. 822.
  391. ^ 橋本 2007, p. 221.
  392. ^ ステンレス協会(編) 1995, p. 816.
  393. ^ a b ステンレス協会(編) 1995, p. 745.
  394. ^ 大山・森田・吉武 1990, p. 91.
  395. ^ 徳田・山田・片桐 2005, p. 124.
  396. ^ a b 大山・森田・吉武 1990, p. 99.
  397. ^ a b ステンレス協会(編) 1995, p. 833.
  398. ^ a b c d 佐藤 2015, p. 23.
  399. ^ a b Outokumpu 2013, p. 28.
  400. ^ a b 田中(編) 2010, p. 76.
  401. ^ 大山・森田・吉武 1990, p. 103.
  402. ^ ステンレス協会(編) 1995, p. 840.
  403. ^ 佐藤 2015, p. 23; 田中(編) 2010, p. 74.
  404. ^ 橋本 2007, p. 232.
  405. ^ ステンレス協会(編) 1995, p. 843.
  406. ^ a b c 佐藤 2015, p. 24.
  407. ^ 田中(編) 2010, p. 80.
  408. ^ 橋本 2007, p. 238.
  409. ^ 橋本 2007, p. 237; 田中(編) 2010, p. 83.
  410. ^ a b 大山・森田・吉武 1990, pp. 111–112.
  411. ^ ステンレス協会(編) 1995, pp. 904, 907.
  412. ^ a b ステンレス協会(編) 1995, p. 889.
  413. ^ 谷野・鈴木 2013, pp. 260–261.
  414. ^ 田中 和明、2008、『よくわかる最新金属加工の基本と仕組み』第1版、秀和システム〈図解入門〉 ISBN 978-4-7980-2086-0 p. 180
  415. ^ ステンレス協会(編) 1995, p. 1093.
  416. ^ 橋本 2007, pp. 245–246.
  417. ^ a b ステンレス協会(編) 1995, p. 1094.
  418. ^ a b 日本機械学会(編)、2007、『機械工学辞典』第2版、丸善 ISBN 978-4-88898-083-8 p. 1025
    田川 一郎・岩佐 実、1956、「非鉄金属のパウダーカッティング」、『溶接学会誌』25巻4号、溶接学会、doi:10.2207/qjjws1943.25.217 p. 217
  419. ^ ステンレス協会(編) 1995, pp. 1095–1096.
  420. ^ ステンレス協会(編) 1995, pp. 1093, 1096.
  421. ^ ステンレス協会(編) 1995, p. 1096; 向井 1999, pp. 191–192.
  422. ^ ステンレス協会(編) 1995, p. 1096; 向井 1999, p. 191.
  423. ^ 濱田 智・茂木 正裕・神田 晋、2010、「プラズマ切断の最新技術」、『溶接学会誌』79巻2号、日本材料学会、doi:10.2207/jjws.79.123 p. 132
  424. ^ 向井 1999, p. 193.
  425. ^ 沼田 慎治 (2012年). “Q-07-12-02 レーザ切断の特徴とレーザ切断するときに使用するアシストガスについて教えて下さい。 ”. 接合・溶接技術Q&A1000. 日本溶接協会. 2020年8月8日閲覧。
  426. ^ 長堀 正幸・沼田 慎治・佐野 義美、2010、「中・厚板レーザ切断の最新技術」、『溶接学会誌』79巻2号、日本材料学会、doi:10.2207/jjws.79.136 p. 140
  427. ^ a b 朝倉 健二・橋本 文雄、2002、『機械工作法Ⅰ』改訂版、共立出版 ISBN 4-320-08105-6 pp. 105–108
  428. ^ 野原 2016, p. 131; 橋本 2007, pp. 244–245.
  429. ^ 田中(編) 2010, p. 200; 野原 2016, p. 134.
  430. ^ 田中(編) 2010, pp. 200–201.
  431. ^ 向井 1999, p. 191.
  432. ^ ステンレス協会(編) 1995, pp. 1104–1105.
  433. ^ 成形加工での注意事項について”. ステンレス協会. 2020年7月15日閲覧。
  434. ^ 橋本 2007, p. 254.
  435. ^ 大山・森田・吉武 1990, pp. 117–122.
  436. ^ 大山・森田・吉武 1990, pp. 119, 121.
  437. ^ a b c 田中(編) 2010, p. 204.
  438. ^ 田中(編) 2010, p. 198.
  439. ^ 田中(編) 2010, p. 198; IMOA 2014, p. 35.
  440. ^ ステンレス協会(編) 1995, pp. 927, 933, 936.
  441. ^ a b 田中(編) 2010, pp. 194–196.
  442. ^ 古君 修・江藤 敏泰・伊藤 雅俊、2011、「講座:ステンレス鋼活用の基礎知識 ―歴史、特性、耐食性― 2.ステンレス鋼の加工と溶接」、『材料』60巻8号、日本材料学会、doi:10.2472/jsms.60.771 p. 773
  443. ^ 田中(編) 2010, p. 204; 橋本 2007, pp. 257–258.
  444. ^ 橋本 2007, pp. 257–258.
  445. ^ ステンレス協会(編) 1995, p. 896.
  446. ^ a b c d e 日本塑性加工学会鍛造分科会(編)、2005、『わかりやすい鍛造加工』初版、日刊工業社 ISBN 978-4-526-05457-0 pp. 23–24
  447. ^ 田中(編) 2010, p. 215.
  448. ^ 田中(編) 2010, p. 217.
  449. ^ 日本機械学会(編)、2007、『機械工学辞典』第2版、丸善 ISBN 978-4-88898-083-8 p. 716
  450. ^ 野原 2016, p. 155.
  451. ^ ステンレス協会(編) 1995, p. 1107; 大山・森田・吉武 1990, p. 122.
  452. ^ ステンレス協会(編) 1995, p. 1108.
  453. ^ a b ステンレス協会(編) 1995, p. 1110.
  454. ^ a b 田中(編) 2010, pp. 223–224.
  455. ^ 野原 2016, p. 154.
  456. ^ 向井 1999, p. 61.
  457. ^ a b 大山・森田・吉武 1990, p. 125.
  458. ^ a b 溶接学会(編)、2010、『新版 溶接・接合技術入門』3版、産報出版 ISBN 978-4-88318-151-3 p. 122
  459. ^ 向井 1999, p. 103.
  460. ^ 向井 1999, p. 104.
  461. ^ 大山・森田・吉武 1990, pp. 125–126, 131.
  462. ^ 野田 卓継、1993、「ステンレス鋼うす板溶接の実際(1) ステンレス鋼うす板のアーク溶接と抵抗溶接」、『溶接学会誌』62巻4号、溶接学会、doi:10.2207/qjjws1943.62.232 p. 51
  463. ^ 向井 1999, p. 82.
  464. ^ 向井 1999, pp. 114–115, 127.
  465. ^ 向井 1999, pp. 62–69, 126–127; 野原 2016, p. 154.
  466. ^ a b 向井 1999, pp. 119–120, 126–127.
  467. ^ 向井 1999, p. 123; ステンレス協会(編) 1995, p. 1037.
  468. ^ 向井 1999, pp. 126–127; ステンレス協会(編) 1995, pp. 1035–1036.
  469. ^ a b 向井 1999, p. 163.
  470. ^ a b ステンレス協会(編) 1995, p. 1063; 向井 1999, pp. 165–166.
  471. ^ ステンレス協会(編) 1995, pp. 1064–1065; Peckner & Bernstein (ed) 1977, p. 26-10.
  472. ^ 丸山 敏治 (2012年). “Q-05-02-53 種類の異なるステンレス鋼の異材溶接についての注意点を教えて下さい。”. 接合・溶接技術Q&A1000. 日本溶接協会. 2020年7月8日閲覧。
  473. ^ a b ステンレス協会(編) 1995, p. 88; 野原 2016, p. 140.
  474. ^ 野原 2016, p. 140.
  475. ^ a b 田中(編) 2010, pp. 26, 28.
  476. ^ 田中(編) 2010, pp. 26, 28; 大山・森田・吉武 1990, p. 82; IMOA 2014, p. 33.
  477. ^ a b 山方 三郎『図解入門 よくわかる最新熱処理技術の基本と仕組み』(第2版)秀和システム、2010年、162頁。ISBN 978-4-7980-2573-5 
  478. ^ ステンレス協会(編) 1995, p. 640.
  479. ^ a b ステンレス協会(編) 1995, p. 88.
  480. ^ 野原 2016, p. 141.
  481. ^ a b c 大山・森田・吉武 1990, p. 76.
  482. ^ ステンレス協会(編) 1995, p. 519.
  483. ^ a b c 田中(編) 2010, p. 25.
  484. ^ 野原 2016, p. 143.
  485. ^ 田中(編) 2010, pp. 111–112.
  486. ^ Peckner & Bernstein (ed) 1977, p. 7-2.
  487. ^ 大山・森田・吉武 1990, p. 82.
  488. ^ ステンレス協会(編) 1995, pp. 88–89.
  489. ^ ステンレス協会(編) 1995, p. 89.
  490. ^ a b 橋本 2007, p. 263.
  491. ^ 大山・森田・吉武 1990, p. 141.
  492. ^ 大山・森田・吉武 1990, p. 133.
  493. ^ a b c d 2B, 2D and BA Cold Rolled Finishes”. Australian Stainless Steel Development Association. 2020年7月26日閲覧。
  494. ^ Heinz Koch, Alfred Otto, Wolfgang Schlump (2004年). “Stainless Steel and the Challenge of Time”. Euro Inox. pp. 3–5. 2020年9月19日閲覧。
  495. ^ Built to Last - Stainless Steel as an Architectural Material”. International Stainless Steel Forum. p. 8. 2020年9月19日閲覧。
  496. ^ a b David Cochrane (2005). Euro Inox. ed. Guide to Stainless Steel Finishes. Building Series, Vol. 1 (3rd ed.). Euro Inox. pp. 3, 11. ISBN 2-87997-173-X. https://www.imoa.info/download_files/stainless-steel/euroinox/Finishes.pdf?m=1454491282& 
  497. ^ a b c d e f 三井 攻・池澤 守、2000、「ステンレス鋼と意匠性」、『表面技術』51巻8号、表面技術協会、doi:10.4139/sfj.51.798 pp. 799, 801
  498. ^ a b c d e f g h i j k 田中(編) 2010, p. 218; 橋本 2007, p. 264.
  499. ^ a b c d e f g h i Surface treatment”. ISSF. 2020年7月25日閲覧。
  500. ^ a b c d e f 橋本 2007, p. 264.
  501. ^ a b c d e f g h i j k l m ステンレスの主な表面仕上げ”. ステンレス協会. 2020年7月25日閲覧。
  502. ^ ステンレス協会(編) 1995, pp. 1130–1131.
  503. ^ a b ステンレス協会(編) 1995, p. 1130.
  504. ^ ISSF 2016, p. 16.
  505. ^ 大山・森田・吉武 1990, p. 135.
  506. ^ ステンレスについて解説(入門篇) 2.表面仕上・研磨仕上”. 林ステンレス工業株式会社. 2020年8月1日閲覧。
  507. ^ 橋本 2007, p. 266.
  508. ^ ステンレス協会(編) 1995, p. 1124.
  509. ^ 田中(編) 2010, pp. 218–219.
  510. ^ 橋本 2007, pp. 263–264.
  511. ^ 田中(編) 2010, p. 218.
  512. ^ 大山・森田・吉武 1990, p. 136.
  513. ^ 田中(編) 2010, p. 221.
  514. ^ 田中(編) 2010, p. 222.
  515. ^ 日本産業規格(JIS)を制定・改正しました(2020年2月分)-ステンレス鋼の化学発色皮膜、多様化する太陽電池モジュールの評価、テレビジョン受信用同軸ケーブルなどのJISを制定・改正-”. 経済産業省 (2020年2月20日). 2020年8月8日閲覧。
  516. ^ a b c d Polychrome: the many colours of stainless steel”. www.stainless-steel-world. Stainless Steel World. pp. 2–3 (2014年3月). 2020年8月2日閲覧。
  517. ^ 大山・森田・吉武 1990, p. 137; 野原 2016, p. 149.
  518. ^ 竹内 武、1986、「ステンレス鋼の着色処理」、『実務表面技術』33巻11号、表面技術協会、doi:10.4139/sfj1970.33.440 pp. 440–441
  519. ^ a b c d ステンレス協会(編) 1995, p. 1149.
  520. ^ JIS G 4331:2020「ステンレス鋼の化学発色皮膜-品質及び試験方法」日本産業標準調査会経済産業省) p. 1
  521. ^ a b Alenka Kosmac (2011). Coouring Stainless Steel. Materials and Applications Series, Volume 16 (1st ed.). Euro Inox. pp. 3, 8. ISBN 978-2-87997-359-3 
  522. ^ 野原 2016, p. 151; ステンレス協会(編) 1995, p. 1149.
  523. ^ ステンレス鋼の化学発色皮膜-品質及び試験方法に関するJIS制定 -色調装飾性等が向上したステンレス鋼製品の普及を目指して-”. 経済産業省 (2020年2月20日). 2020年8月8日閲覧。
  524. ^ ステンレス協会(編) 1995, p. 1164; 大山・森田・吉武 1990, p. 137.
  525. ^ a b ステンレス協会(編) 1995, p. 1164.
  526. ^ 橋本 2007, p. 273; 大山・森田・吉武 1990, p. 137.
  527. ^ 大山・森田・吉武 1990, p. 137.
  528. ^ 橋本 2007, p. 274.
  529. ^ ステンレス協会(編) 1995, p. 1165.
  530. ^ ステンレス協会(編) 1995, pp. 1164–1165.
  531. ^ ステンレス協会. “第17回ステンレス協会賞 受賞作品 優秀賞”. 2020年8月9日閲覧。
  532. ^ a b ステンレス協会(編) 1995, p. 1150.
  533. ^ ステンレス協会(編) 1995, pp. 1150, 1157.
  534. ^ ステンレス協会(編) 1995, pp. 1150–1151.
  535. ^ ステンレス協会(編) 1995, p. 1157.
  536. ^ ステンレス協会(編) 1995, p. 1155; 橋本 2007, p. 271; 野原 2016, p. 148.
  537. ^ ステンレス協会(編) 1995, p. 1155; 野原 2016, p. 148.
  538. ^ 橋本 2007, p. 271.
  539. ^ ステンレス協会(編) 1995, p. 1153.
  540. ^ a b 橋本 2007, p. 272.
  541. ^ 橋本 2007, p. 272; ステンレス協会(編) 1995, p. 1153.
  542. ^ ステンレス協会(編) 1995, p. 1127.
  543. ^ 大山・森田・吉武 1990, p. 139.
  544. ^ 野原 2016, p. 151; Outokumpu 2013, p. 74.
  545. ^ 田中(編) 2010, p. 239.
  546. ^ 菊池 2015, p. 40.
  547. ^ ISSF 2020, p. 20.
  548. ^ 野原 2016, p. 31.
  549. ^ 橋本 2007, pp. 14–23.
  550. ^ a b c d e 大山・森田・吉武 1990, p. 168.
  551. ^ Cobb 2010, pp. 193–194.
  552. ^ ステンレス協会(編) 1995, p. 1386; 橋本 2007, p. 121.
  553. ^ 橋本 2007, p. 121.
  554. ^ Tomé Morrissy-Swan (2020年1月8日). “The best chef's knives”. 2020年8月22日閲覧。
    包丁の種類”. 京浜刃物専門店会. 2020年8月22日閲覧。
  555. ^ ステンレス協会(編) 1995, pp. 1386–387.
  556. ^ 徳田・山田・片桐 2005, pp. 176–177.
  557. ^ a b Andréana Lefton and Bob Vila. “Stylish, Stain-Resistant, or Both: Which Type of Kitchen Sink Is Right for You?”. 2020年8月22日閲覧。
    岩間 光佐子. “キッチンシンクの種類と特徴&選び方のポイント”. 2020年8月22日閲覧。
  558. ^ a b 橋本 2007, pp. 114–115.
  559. ^ 田中(編) 2010, p. 318.
  560. ^ 橋本 2007, p. 117.
  561. ^ a b 橋本 2007, p. 123.
  562. ^ Peckner & Bernstein (ed) 1977, p. 40-5.
  563. ^ 橋本 2007, p. 134.
  564. ^ a b 大山・森田・吉武 1990, p. 161.
  565. ^ 田中(編) 2010, p. 255; Peckner & Bernstein (ed) 1977, p. 40-5.
  566. ^ a b 田中(編) 2010, p. 309.
  567. ^ a b 菊池 2015, p. 42.
  568. ^ 橋本 2007, pp. 68–70; 菊池 2015, p. 42.
  569. ^ 田中(編) 2010, p. 314; ステンレス協会(編) 1995, pp. 1339, 1388.
  570. ^ 444 Stainless Steel”. AKSteel. 2020年9月1日閲覧。
  571. ^ a b 田中(編) 2010, p. 315.
  572. ^ Railcars in Stainless Steel”. ISSF. p. 5. 2017年11月5日閲覧。
  573. ^ a b c 近藤 圭一郎 編『鉄道車両技術入門』(初版)オーム社、2013年7月20日、28-33頁。ISBN 978-4-274-21383-0 
  574. ^ 橋本 2007, p. 138.
  575. ^ 宮本 昌幸『図解・鉄道の科学』(初版)講談社〈ブルーバックス〉、2006年、191頁。ISBN 4-06-257520-5 
  576. ^ 佐藤 裕之、2016、「鉄道技術 来し方行く末 鉄道車両用構体の材料と構造」、『RRR』73巻10号、鉄道総合技術研究所、2016年10月 p. 30
  577. ^ マリアナ・フォレスト、ホルガー・アルダー (2016年5月). “application report 鉄道車両製造におけるレーザビーム溶接”. http://ex-press.jp/ilsj/. Industrial Laser Solutions Japan. イーエクスプレス. p. 20. 2020年7月11日閲覧。
  578. ^ 田中(編) 2010, p. 258.
  579. ^ 菊池 2015, p. 41; 田中(編) 2010, p. 259.
  580. ^ a b 橋本 2007, p. 90; 菊池 2015, p. 41.
  581. ^ 菊池 2015, p. 41.
  582. ^ 橋本 2007, pp. 91–93; 田中(編) 2010, p. 262.
  583. ^ サイバートラックとDMCデロリアン、車とその製作者を写真で比較 - Business Insider、2019年12月12日
  584. ^ 橋本 2007, p. 94; 田中(編) 2010, p. 261.
  585. ^ 雑学講座33: バイクのブレーキ その1”. ブレーキ雑学講座. S&Eブレーキ株式会社. 2017年11月18日閲覧。
  586. ^ a b 橋本 2007, p. 94.
  587. ^ ステンレス協会(編) 1995, p. 1273.
  588. ^ 野原 2016, p. 221.
  589. ^ 大山・森田・吉武 1990, p. 175.
  590. ^ ステンレス協会(編) 1995, p. 1278.
  591. ^ 田中(編) 2010, p. 265.
  592. ^ 橋本 2007, pp. 144–145.
  593. ^ James Chater. “Picking up steam: LNG continues to expand”. Stainless Steel World. KCI Media Group B.V.. 2020年9月18日閲覧。
  594. ^ Peckner & Bernstein (ed) 1977, p. 37-6; ステンレス協会(編) 1995, p. 1280.
  595. ^ ステンレス協会(編) 1995, p. 1281.
  596. ^ Peckner & Bernstein (ed) 1977, p. 47-10.
  597. ^ ステンレス協会(編) 1995, p. 1281; Peckner & Bernstein (ed) 1977, p. 47-10.
  598. ^ a b Brahambhatt, Rupendra (2023年4月30日). “スペースXのスターシップがこれまでのロケットと違う理由…なぜ銀と黒なのか”. BUSINESS INSIDER JAPAN. 2024年1月28日閲覧。
  599. ^ a b 田中(編) 2010, p. 321.
  600. ^ Lai et al.(ed) 2012, p. 134.
  601. ^ 橋本 2007, p. 96.
  602. ^ Lai et al.(ed) 2012, p. 3.
  603. ^ 橋本 2007, p. 98.
  604. ^ Lai et al.(ed) 2012, p. 134; 田中(編) 2010, p. 325.
  605. ^ 田中(編) 2010, pp. 320–321.
  606. ^ 橋本 2007, p. 99.
  607. ^ 菊池 2015, p. 42; 大山・森田・吉武 1990, p. 155; 田中(編) 2010, p. 325.
  608. ^ 橋本 2007, p. 97.
  609. ^ 橋本 2007, pp. 100–102.
  610. ^ 諸石 大司、1995、「最近のステンレス鋼の動向」、『まてりあ』34巻12号、日本金属学会、doi:10.2320/materia.34.1401 p. 1405
  611. ^ 田中(編) 2010, p. 323.
  612. ^ ステンレス協会(編) 1995, p. 1181; Peckner & Bernstein (ed) 1977, p. 38-5.
  613. ^ Peckner & Bernstein (ed) 1977, p. 38-5.
  614. ^ ステンレス協会(編) 1995, p. 1179; Peckner & Bernstein (ed) 1977, pp. 38–8, 38–9.
  615. ^ 田中(編) 2010, p. 247.
  616. ^ a b c ステンレス協会(編) 1995, p. 1195.
  617. ^ The Role of Stainless Steels in Petroleum Refining”. Nickel Institute. p. 17 (2020年). 2020年9月5日閲覧。
  618. ^ 川野 浩二、2016、「石油精製プラントにおける材料経年劣化」、『圧力技術』54巻3号、日本高圧力技術協会、doi:10.11181/hpi.54.133 pp. 132–137
  619. ^ Peckner & Bernstein (ed) 1977, p. 43-1.
  620. ^ a b Stainless steelsand specialty alloysfor pulp, paper and biomass conversion”. Nickel Institute. pp. 7, 19, 74, 87–88 (2017年). 2020年9月5日閲覧。
  621. ^ a b 田中(編) 2010, p. 293.
  622. ^ Peckner & Bernstein (ed) 1977, pp. 37–2, 37–3.
  623. ^ Peckner & Bernstein (ed) 1977, pp. 37–2.
  624. ^ Selection of 316, 304 and 303 types of stainless steels for seawater applications”. British Stainless Steel Association. 2020年8月26日閲覧。
  625. ^ a b c 小林 裕、2013、「特集/エネルギー・インフラ技術を支えるステンレス鋼 IV. インフラ関係で使用されるステンレス鋼 1. ジャケット式防波堤向けスーパーステンレス鋼」、『特殊鋼』62巻6号、特殊鋼倶楽部、2013年11月 pp. 36–37
  626. ^ ステンレス協会(編) 1995, p. 1357; 松島 2007, pp. 113–116.
  627. ^ a b International Stainless Steel Forum, ed (2010). Desalination in Stainless Steel. International Stainless Steel Forum. p. 3, 5. ISBN 978-2-930069-63-0 
  628. ^ IMOA 2014, p. 55.
  629. ^ 田中(編) 2010, p. 267; ステンレス協会(編) 1995, p. 1286.
  630. ^ 田中(編) 2010, pp. 267–268; ステンレス協会(編) 1995, p. 1287.
  631. ^ 田中(編) 2010, pp. 271–273; ステンレス協会(編) 1995, p. 1293.
  632. ^ 田中(編) 2010, p. 273; ステンレス協会(編) 1995, pp. 1293–1294.
  633. ^ 田中(編) 2010, pp. 274–277; ステンレス協会(編) 1995, p. 1294.
  634. ^ 橋本 2007, p. 129.
  635. ^ International Atomic Energy Agency (2011). Stress Corrosion Cracking in Light Water Reactors: Good Practices and Lessons Learned. IAEA Nuclear Energy Series. International Atomic Energy Agency. pp. 18–23. ISBN 978-92-0-117210-5. ISSN 1995-7807. https://www.iaea.org/publications/8671/stress-corrosion-cracking-in-light-water-reactors-good-practices-and-lessons-learned 
  636. ^ 田中(編) 2010, p. 284.
  637. ^ 大山・森田・吉武 1990, p. 162.
  638. ^ a b 野原 2016, p. 39.
  639. ^ 大山・森田・吉武 1990, p. 168; ステンレス協会(編) 1995, p. 1392.
  640. ^ ステンレス協会(編) 1995, p. 1392.
  641. ^ a b 大山・森田・吉武 1990, p. 169.
  642. ^ Lai et al.(ed) 2012, p. 135.
  643. ^ 塙 隆夫、2006、「ステント用金属材料」、『人工臓器』35巻1号、日本人工臓器学会、doi:10.11392/jsao1972.35.193 pp. 193–196
  644. ^ 塙 隆夫「医療分野におけるチタンの表面処理」『軽金属』第55巻第11号、軽金属学会、2005年、553頁、doi:10.2464/jilm.55.553 
  645. ^ Lai et al.(ed) 2012, p. 73.
  646. ^ 塙 隆夫、2007、「人体中での金属の信頼性を向上させる技術」、『表面技術』58巻9号、表面技術協会、doi:10.4139/sfj.58.495 p. 498
    Daisuke Kuroda, Sachiko Hiromoto, Takao Hanawa, Yasuyuki Katada (2002). “Corrosion Behavior of Nickel-Free High Nitrogen Austenitic Stainless Steel in Simulated Biological Environments”. MATERIALS TRANSACTIONS (The Japan Institute of Metals and Materials) 43 (12): 3100. doi:10.2320/matertrans.43.3100. 
  647. ^ ISSF 2016, p. 6.
  648. ^ ステンレス協会(編) 1995, p. 1412.
  649. ^ Art”. ISSF. 2020年9月16日閲覧。
  650. ^ ステンレス協会(編) 1995, p. 1412; 大山・森田・吉武 1990, p. 155.
  651. ^ 佐藤 義夫『野外彫刻マニュアル :まちにアートを』ぎょうせい、1993年、106-122頁。ISBN 4-324-03957-7 
  652. ^ a b ステンレス協会(編) 1995, p. 1413.
  653. ^ 坂上 直哉、2017、『翼竜のたまご:ステンレスは建築の絵の具だ』第1版、日経BP ISBN 978-4-8222-5068-3 pp. 56‐58, 64
  654. ^ Ian Desmond (2014年5月8日). “Stainless steel and art”. John Desmond Limited. 2018年4月1日時点のオリジナルよりアーカイブ。2018年4月1日閲覧。
  655. ^ Team Stainless 2013, p. 2.
  656. ^ Team Stainless 2013, p. 5.
  657. ^ a b Environmental sustainability”. ISSF. 2020年9月13日閲覧。
  658. ^ a b 五十嵐 佑馬・醍醐 市朗・松野 泰也・足立 芳寛、2005、「日本国内におけるステンレス鋼のマテリアルフロー解析および循環利用促進によるCO2削減効果の評価」、『鉄と鋼』91巻12号、日本鉄鋼協会、doi:10.2355/tetsutohagane1955.91.12_903 p. 906
  659. ^ Team Stainless 2013, pp. 6–8.
  660. ^ 醍醐 市朗・松本 祐一・松野 泰也・足立 芳寛、2009、「CrとNiの物質収支を考慮したステンレス鋼のマテリアルフロー分析」、『鉄と鋼』95巻6号、日本鉄鋼協会、doi:10.2355/tetsutohagane.95.506 pp. 512–513
  661. ^ Team Stainless 2013, pp. 2, 8.
  662. ^ Team Stainless 2013, p. 8.
  663. ^ 菊池 2015, p. 44.
  664. ^ ISSF 2020, pp. 3, 7.
  665. ^ 2020 World Steel in Figures”. World Steel Association. p. 7. 2020年9月16日閲覧。
  666. ^ ISSF 2020, p. 4.
  667. ^ a b c ISSF 2020, p. 7.
  668. ^ Meltshop production”. ISSF. 2019年12月21日時点のオリジナルよりアーカイブ。2019年1月13日閲覧。





英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「ステンレス鋼」の関連用語

ステンレス鋼のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



ステンレス鋼のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのステンレス鋼 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS