完全数 完全数の概要

完全数

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/03/15 05:10 UTC 版)

数学上の未解決問題
偶数の完全数は無数にあるか。また、奇数の完全数は存在するか。

「完全数」は「万物は数なり」と考えたピタゴラスが名付けた数の一つであることに由来する[1]が、彼がなぜ「完全」と考えたのかについては何も書き残されていないようである[1]中世の『聖書』の研究者は、「6 は『神が世界を創造した(天地創造)6日間』、28 は『公転周期』で、これら2つの数は地上と天界における神の完全性を象徴している」[1]と考えたとされる[2]古代ギリシアの数学者は他にもあと2つの完全数 (496, 8128) を知っていた[1]。以来、完全数はどれだけあるのかの探求が2500年以上のちの現在まで続けられている。

完全数の定義は、正の約数の総和が自分自身の2倍に等しいことと同値である。すなわち、N が完全数であるとは、約数関数 σ に対して σ(N) = 2N が成り立つことであると表現できる。また、正の約数の逆数和が 2 であると表現することもできる。

歴史

完全数に関する最初の成果は紀元前3世紀ごろのユークリッドである。彼は『原論』(第9巻、命題36)で、「2n − 1素数ならば、2n−1(2n − 1) は完全数である」ということを証明した[注釈 1]2n − 1 で表される数をメルセンヌ数といい、それが素数である場合をメルセンヌ素数という。

古代から、6、28、496、8128の4つの数が完全数であることは知られており、ゲラサのニコマコスの『算術入門』には4つの完全数に関する記述が存在する[3]

ユークリッドの公式は偶数の完全数しか生成しないが、逆に偶数の完全数が全て 2n−1(2n − 1) の形で書けるかどうかは18世紀までは未解決であった。レオンハルト・オイラーは偶数の完全数がこの形に限ることを証明した[4][5][注釈 2]

メルセンヌ素数の探索は、エドゥアール・リュカデリック・ヘンリー・レーマー英語版によってメルセンヌ数が素数であるかどうかの効率的な判定法が考案され、1950年代からコンピュータが使われるようになる。現在では分散コンピューティング GIMPS による探求が行われていて、2022年2月現在で判明している最大のメルセンヌ素数は2486万2048桁の数である[7]

2021年8月現在発見されている完全数はメルセンヌ素数と同じく51個である。紀元前より考察されている対象であるにもかかわらず、「偶数の完全数は無数に存在するか?」「奇数の完全数は存在するか?」という問題は未解決である。

概要

完全数は、小さい順に

6, 28, 496, 8128, 33550336, 8589869056, …オンライン整数列大辞典の数列 A000396

である。

各完全数の正の約数の総和は

12, 56, 992, 16256, 67100672, 17179738112, …オンライン整数列大辞典の数列 A139256

隣り合う完全数の差は

22, 468, 7632, 33542208, 8556318720, …オンライン整数列大辞典の数列 A139228

完全数の総和の列は

6, 34, 530, 8658, 33558994, …オンライン整数列大辞典の数列 A092336

である。

628 がなぜ「完全」であるかは中世の学者の議論の対象になり、6 は神が創造した1週間(日曜日は神が天地創造を終えて休んだ安息日で、キリスト教ではこれを除外する)、28 は「公転周期」とされた[1]聖アウグスティヌス(? - 604年)はこれとは一線を画し、「6 はそれ自体完全な数である。神が万物を6日間で創造したから 6 が完全なのでなく、むしろ逆が真である」としている[1]

偶数の完全数 2p−1(2p − 1) = (Mp+1)Mp/2Mp 番目の三角数でもある。


注釈

  1. ^ ユークリッド原論』第9巻、命題36は以下の通り。
    もし単位から始まり順次に1対2の比をなす任意個の数が定められ,それらの総和が素数になるようにされ,そして全体が最後の数にかけられてある数を作るならば,その積は完全数であろう。 — エウクレイデス、『ユークリッド原論』第9巻、命題36
    すなわち
    1 + 2 + 22 + 23 + ... + 2n-1 = Mn が素数ならば Mn × 2n-1 は完全数である。
  2. ^ a b Euler (1849)は. 1747年2月23日にベルリン・アカデミーにより査読され、オイラーの死後の1849年に出版された。特に 88頁の§8を参照[6]
  3. ^ オイラーが証明した[9]

出典

  1. ^ a b c d e f 「高数・数学者列伝」吉永良正『高校への数学』vol.20、1995年8月号
  2. ^ 淡中忠郎「メルセンヌ数物語」『数学セミナー』、1973年9月号。数学セミナー編集部(1982)、65-67頁に再録されている。
  3. ^ Nicomachus of Gerasa (1926). Introduction to Arithmetic. Martin Luther D'Oge (trans). The Macmillan Company. pp. 207–212. https://archive.org/details/NicomachusIntroToArithmetic 
  4. ^ a b ハーディ & ライト 2001, p. 317
  5. ^ a b 和田 1981, pp. 59–61
  6. ^ Dickson (2005, p. 19)
  7. ^ "GIMPS Discovers Largest Known Prime Number: 282,589,933-1" (Press release) (英語). GIMPS. 21 December 2018. 2022年2月5日時点のオリジナルよりアーカイブ。2022年2月22日閲覧
  8. ^ ハーディ & ライト 2001, p. 316
  9. ^ Dickson (2005, p. 98)
  10. ^ Nielsen, Pace P. (2003). “An upper bound for odd perfect numbers”. Integers 3: A14. http://math.colgate.edu/~integers/vol3.html. 
  11. ^ Grün, Otto (1952). “Über ungerade vollkommene Zahlen”. Mathematische Zeitschrift 55 (3): 353--354. doi:10.1007/BF01181133. 
  12. ^ M. Kishore, "On odd perfect, quasiperfect, and odd almost perfect numbers", Math. Comp. 36 (1981), 583-586.
  13. ^ W. L. McDaniel, "The non-existence of odd perfect numbers of a certain form", Arch. Math. (Basel) 21 (1970), 52-53.
  14. ^ Fletcher, S. Adam; Nielsen, Pace P.; Ochem, Pascal (2012). “Sieve methods for odd perfect numbers”. Mathematics of Computation 81 (279): 1753--1776. doi:10.1090/S0025-5718-2011-02576-7. ISSN 0025-5718. MR2904601. http://www.lirmm.fr/~ochem/opn/OPNS_Adam_Pace.pdf. 
  15. ^ W. L. McDaniel and P. Hagis Jr., "Some results concerning the non-existence of odd perfect numbers of the form paM", Fibonacci Quart. 13 (1975), 25-28.
  16. ^ G. L. Cohen, R. J. Williams, "Extensions of some results concerning odd perfect numbers", Fibonacci Quart. 23 (1985), 70-76.
  17. ^ Yamada, Tomohiro (2019). “A new upper bound for odd perfect numbers of a special form”. Colloquium Mathematicum 156 (1): 15--21. doi:10.4064/cm7339-3-2018. ISSN 1730-6302. 
  18. ^ J. Touchard, "On prime numbers and perfect numbers", Scripta Math. 19 (1953), 53-59.
  19. ^ M. Satyanarayana, "Odd perfect numbers", Math. Student 27 (1959), 17-18.
  20. ^ J. A. Holdener, "A theorem of Touchard on the form of odd perfect numbers". Amer. Math. Monthly, 109 (2002), 661-663.
  21. ^ T. Roberts, "On the Form of an Odd Perfect Number", Australian Mathematical Gazette, 35:4 (2008), 244
  22. ^ a b c Ochem, Pascal; Rao, Michaël (2012). “Odd perfect numbers are greater than 101500. Mathematics of Computation 81 (279): 1869--1877. doi:10.1090/S0025-5718-2012-02563-4. ISSN 0025-5718. MR2904606. Zbl 1263.11005. http://www.lirmm.fr/~ochem/opn/opn.pdf. 
  23. ^ R. P. Brent, Graeme L. Cohen, H. J. J. te Riele, "Improved techniques for lower bounds for odd perfect numbers", Math. Comp. 57 (1991), 857-868
  24. ^ Nielsen, Pace P. (2015). “Odd perfect numbers, Diophantine equations, and upper bounds”. Mathematics of Computation 84 (295): 2549--2567. doi:10.1090/S0025-5718-2015-02941-X. ISSN 0025-5718. MR3356038. https://math.byu.edu/~pace/BestBound_web.pdf. 
  25. ^ a b Nielsen, Pace P. (2007). “Odd perfect numbers have at least nine distinct prime factors”. Mathematics of Computation 76 (260): 2109--2126. arXiv:math/0602485. doi:10.1090/S0025-5718-07-01990-4. ISSN 0025-5718. MR2336286. https://math.byu.edu/~pace/NotEight_web.pdf. 
  26. ^ J. E. Z. Chein, "An odd perfect number has at least 8 prime factors", Doctoral Thesis, Pennsylvania State University, 1979.
  27. ^ P. Hagis Jr., "Outline of a proof that every odd perfect number has at least eight prime factors", Math. Comp. 35 (1980) 1027-1032.
  28. ^ G. L. Cohen, R. M. Sorli, "On the number of distinct prime factors of an odd perfect number", J. Discrete Algorithms 1 (2003), 21-35.
  29. ^ K. K. Norton, "Remarks on the number of factors of an odd perfect number", Acta Arith., 6 (1960/1961), 365-374.
  30. ^ 75個以上であることを示した、以前の結果は K. G. Hare, "New techniques for bounds on the total number of prime factors of an odd perfect number", Math. Comp. 76. (2007), 2241-2248. preprint
  31. ^ T. Goto and Y. Ohno, "Odd perfect numbers have a prime factor exceeding 108", Math. Comp. 77 (2008), 1859-1868. "奇数の完全数の最大素因子について" - preprint を入手可能。
  32. ^ P. M. Jenkins, "Odd perfect numbers have a prime factor exceeding 107", Math. Comp. 72 (2003), 1549-1554.
  33. ^ P. Hagis, Jr. and G. L. Cohen, "Every odd perfect number has a prime factor which exceeds 106", Math. Comp. 67 (1998), 1323-1330.
  34. ^ D. E. Iannucci, "The second largest prime divisor of an odd perfect number exceeds ten thousand", Math. Comp. 68 (1999), 1749-1760.
  35. ^ D. E. Iannucci, "The third largest prime divisor of an odd perfect number exceeds one hundred", Math. Comp. 69 (2000), 867-879.
  36. ^ Weisstein, Eric W. "Multiperfect Number". mathworld.wolfram.com (英語).
  37. ^ Weisstein, Eric W. "Deficient Number". mathworld.wolfram.com (英語).
  38. ^ Weisstein, Eric W. "Abundant Number". mathworld.wolfram.com (英語).
  39. ^ Weisstein, Eric W. "Amicable Pair". mathworld.wolfram.com (英語).
  40. ^ Weisstein, Eric W. "Sociable Numbers". mathworld.wolfram.com (英語).
  41. ^ Weisstein, Eric W. "Quasiperfect Number". mathworld.wolfram.com (英語).
  42. ^ Weisstein, Eric W. "Almost Perfect Number". mathworld.wolfram.com (英語).
  43. ^ Weisstein, Eric W. "Multiplicative Perfect Number". mathworld.wolfram.com (英語).






完全数と同じ種類の言葉


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「完全数」の関連用語

完全数のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



完全数のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの完全数 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS