geometrization conjectureとは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > geometrization conjectureの意味・解説 

幾何化予想

(geometrization conjecture から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/05/27 03:32 UTC 版)

幾何化予想(きかかよそう、: geometrization conjecture)は、1982年にアメリカ数学者ウィリアム・サーストンによって提出された「コンパクト3次元多様体は、幾何構造を持つ8つの部分多様体に分解される」という命題位相幾何学微分幾何学を結びつけるものでありミレニアム懸賞問題にも挙げられていたポアンカレの予想問題の解法の過程として思いつかれた。2003年グリゴリー・ペレルマンによるリッチフローを用いた証明が示され、現在ではその証明が基本的に正しいものとされている。これにより、およそ100年にわたり未解決だった3次元ポアンカレ予想が証明されることになった。

概説

2次元多様体では3種類の幾何構造(ユークリッド構造ロバチェフスキー構造リーマン構造)が考えられ、全ての2次元多様体はこの内1つを自然な幾何構造として持つというのは良く知られた事実であった[1]が3次元多様体は自由度が高すぎるため一般には自然な幾何構造は持たせることはできないと考えられていた(実際これは正しい)。

これに対しウィリアム・サーストンは3次元の多様体上の自然な幾何構造というものを新たに定義しそれに基づけば8種類の幾何構造を考えられることを示した。これらには2次元にも存在する3種類の幾何構造と2次元の円筒に対応する球面及び双曲面線分積空間のもつ構造(円周と線分の積空間である2次元多様体、円筒は2次元ユークリッド構造をもつ。また、平面と線分の積空間は3次元ユークリッド構造を持つ)、及び2次の実特殊線形群(双曲平面の変換群)の普遍被覆空間(なお、球面の変換群の普遍被覆空間は3次元球面)及びニル (Nil) とソル (Sol) と呼ばれる、合わせて3つの、2次元と1次元の多様体の単純な積では構成できない特殊な幾何構造がある。サーストンの幾何化予想とは全ての3次元多様体はこれらのいずれかの幾何構造を持つ幾つかの部分多様体に分解できるというものである[2]

微分幾何学からのアプローチ

この予想の解決に大きな役割を担ったのはリチャード・S・ハミルトンが導入したリッチフローという偏微分方程式である。これはもともとハミルトンが熱伝導を記述するために考案したものだがシン=トゥン・ヤウが幾何化予想解決につながると考えハミルトンに研究を促したもので、19世紀の数学者グレゴリオ・リッチ=クルバストロの名を冠するのは彼が自分の弟子のトゥーリオ・レヴィ=チヴィタと共に書いた論文で導入したことに由来する、リッチフローは以後数学のみならず物理学まで広く使われることになるテンソルの概念を基盤としている。

リッチフローは前述の通りもともと熱伝導を表すものである。ハミルトンとヤウのアイディアはこれを用いて多様体の曲率を表そうというものである。しかし曲率は熱と比べて非常に複雑な対象である[3]。ハミルトンはどんな滑らかな多様体でもリッチフローを持つことを証明した[4]

しかし、リッチフローには特異点という計算不可能な点を産み出すことがあるという問題があった(=リッチフローの特異点問題)。ハミルトンは解決を試み幾つかの特異点を消すことに成功はしたものの、最終的な解決はグリゴリー・ペレルマンを待つことになる。

幾何化予想の概要

幾何化予想(geometrization conjecture)は、ウィリアム・サーストン(William Thurston)により、(closed) 3-次元多様体の分類のプログラムとして、1980年に提案された。幾何化の目的は、3-次元多様体を基本的なブロックに分解し、一つ一つのブロックでの幾何学的構造を特定できるような分解を見つけるプログラムであり、「常に基本ブロックへの分解が可能であろう」という予想を、サーストンの幾何化予想という。また、幾何化予想は、ポアンカレ予想の一般化となっており、グリゴリー・ペレルマン(Grigory Yakovlevich Perelman)により、リッチフローを使ったポアンカレ予想の証明の際にも使用された。

3-次元多様体

3-次元多様体(もしくは、短く 3-多様体)は、局所的に 3次元の写像により記述される、つまり、小さな領域では通常の 3次元ユークリッド空間となるような位相空間のことを言う。しかし、3次元多様体の全体を、3次元空間の部分集合と考えることは一般にはできない。このことは 2次元で考えると明らかである。2次元の球面英語版(sphere)(つまり、曲面)は、局所的には 2次元の写像により拡張することができる(通常の地図もそのような平面のひとつである)。しかし、一度に 2次元のユークリッド平面上に、2-球面の全体を表すことはできない。この 2次元の例の 3次元での写像の類似物が(多様体を被覆する各々の開近傍どうしの交わり上の)座標変換であり、3次元多様体全体を決定する。

座標変換が可能(座標変換は連続であったり、微分可能であったり、無限回微分可能であったりする)か否かが、より高次元では問題となるが、次元 3 のときは該当せず、3-次元多様体の特別な性質を持っていると言える。詳しくは、数学的には各々の3-次元位相多様体(topological 3-manifold)の上には、一つの微分可能構造を持つ 3-次元多様体でしかあり得ないということ言うことができる。また、3-次元多様体の研究で、トポロジーの方法と微分幾何学の方法は組み合わせることができる。これを扱う分野は、(統一されて)3-次元幾何学、3-次元トポロジーと呼ばれる。

3-次元幾何学とトポロジーの目的は、閉じた(つまり、境界のない)3-次元多様体全体の分類し理解することである。2-次元多様体の場合と比較して、閉 3-次元多様体の数は非常に多いので、この問題は難しい。

ウィリアム・サーストンによる幾何化予想(幾何化プログラム)の提案は、3-次元多様体をうまく分解して、各々の部分が固有な幾何学を持ち、固有の幾何学はこの各々の部分のトポロジカルな構造を特徴付けることにより、上記の分類を導くという提案である。

基本モデルへの分解

まず、3-次元多様体の基本モデルへの分解は、埋め込まれている 2-次元球面に沿って 2つの成分へと切り開くことである。結果として現れる縁(edge)は 2-球面 (two spheres) であり、ここで各々を一つの 3-球体へ貼り合わせ、再び各々の成分が境界を持たないようにする。

この 2-球面に沿った分解を通し、既約な成分へと到達することができる。 このことは、全ての埋め込まれた 2-球面は、一つの 3-球体の縁であり、従って、さらに分解すると加えられていた

連結和の図

連結和(connected sum):多様体の変形の方法で、2つの多様体が与えられたとき、互いを選択した点でつなぎ合わせることをいう。この構成は、閉曲面の分類で重要な役割を果たす。(曲面の連結和を参照)

このことを一般化して、右図のように同一な部分多様体に沿って多様体を張り合わせることができる。この一般化はファイバー和とも呼ばれる。結び目和や結び目の合成と呼ばれる結び目の連結和の考え方とも密接に関係する。

  • ^ ハーケン多様体(Haken manifold):ハーケン多様体とは、向き付け可能でコンパクトな既約 3-多様体で、両サイドで収縮不可能な曲面を埋め込むことができるようなものをいう。時には、ハーケン多様体がコンパクトで向き付け可能な既約 3-多様体であり、単に向き付け可能な収縮不可能な曲面を持つような多様体を言うこともある。 3-多様体がハーケン多様体により有限被覆される場合を、仮想ハーケン多様体(virtually Haken)という。仮想ハーケン予想は、すべてのコンパクトな既約な無限基本群を持つ 3-多様体は、仮想ハーケン多様体であるという予想である。 ハーケン多様体はウォルフガング・ハーケン(Wolfgang Haken)により1961-2年に、ハーケン多様体は階層を持っていて、そこでは収縮不可能な曲面に沿ってハーケン多様体が 3-球体へ分解することができることを証明した。 ハーケンは、収縮不可能な曲面をひとつ持つ場合は有限解の操作で収縮不可能な曲面を見つけることができることも示した。
  • 関連項目

    参考文献

    幾何学予想とリッチフローのオーバービュー
    トポロジーの基礎とJSJ-分解
    幾何学モデルとサーストンのプログラム
    リッチフローを使ったペレルマンの証明

    外部リンク




    英和和英テキスト翻訳>> Weblio翻訳
    英語⇒日本語日本語⇒英語
      

    辞書ショートカット

    すべての辞書の索引

    「geometrization conjecture」の関連用語










    geometrization conjectureのお隣キーワード
    検索ランキング

       

    英語⇒日本語
    日本語⇒英語
       



    geometrization conjectureのページの著作権
    Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

       
    ウィキペディアウィキペディア
    All text is available under the terms of the GNU Free Documentation License.
    この記事は、ウィキペディアの幾何化予想 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

    ©2025 GRAS Group, Inc.RSS