ファン・デル・ヴェルデンの定理
(Van der Waerden's theorem から転送)
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/09/04 09:34 UTC 版)
ファン・デル・ヴェルデンの定理(ファン・デル・ヴェルデンのていり)とは、等差数列に関する次の主張である。
「任意の自然数 k, l に対して、自然数 n(k, l) が存在して、連続する n(k, l) 個の自然数をどのように k 色に塗り分けても、同色で長さが l の等差数列が存在する」
証明
集合Cに含まれる元が全て同じ色で塗られているとき、Cは単色であるということにする。 L 、D、Nは1以上の整数で、a,s1,s2,…,sDは正の整数であるとする。 L,D,a,s1,s2,...,sD,0以上D以下の整数kに対して、集合P(k)を次で定める。
MinN(L,D,N)を次の条件を満たす最小の正の整数であるとする:
条件:「区間[1,MinN(L,D,N)]に含まれる整数をN色でいかなる方法で塗り分けても、a,s1,s2,...,sDが存在して、0以上D以下である任意の整数kに対して、P(k)は区間[1,MinN(L,D,N)]に含まれており、P(k)は単色である(なお、pとqが異なっており、xがP(p)に含まれ、yがP(q)に含まれているとき、xとyは必ずしも同じ色で塗られている必要はない)」
MinN(L,1,N)の存在を示せば、ファン・デル・ヴェルデンの定理が示されたことになるということに注意せよ。目的はMinN(L,D,N)を上から評価することである。証明は帰納法による。任意のNに対してMin(1,1,N)が存在することは自明である。以下の1.と2.を示せば良い。 ここでは、区間Aの長さを、Aに含まれる整数の個数とする。
1. 与えられたL,Dと任意のnに対して、MinN(L,D,n)は存在するとする。ちなみにこのとき、MinN(L,d,n) (d=1,…,D)も存在する。また、とする。次の不等式が成り立つ。
<証明> I = [1 , M*MinN(L,1,n^M)]とする。区間Iに含まれる整数をn色で塗り分けたとする。Iを長さMのMinN(L,1,n^M)個の区間に分割する。長さMの各区間はn^M色のうちの1色で塗られていると見なすことが出来る。MinNの定義より、我々は等間隔で並んだL+1個の長さMの区間を見つけることが出来、その中で最も右の1個を除いたL個の区間は同じ色で塗られている。Mの定義より、a,s_1,s_2,…,s_Dが存在して、P(k) (k=0,1,…,D) は区間[1,M]に含まれており、P(k)は単色である。s_{D+1}を上述の長さMの区間どうしの間隔とすれば良い。
2. あるLと任意のD、任意のnに対してMinN(L,D,n)は存在するとする。このとき、次のようにMinN(L+1,1,n)を上から評価することができる。
<証明> I=[1,2MinN(L,n,n)]とする。Iをn色で塗り分ける。このときa,s_1,…,s_nが存在して、P(k) (k=0,1,…,n)は[1,MinN(L,n,n)]に含まれており、P(k)は単色である。鳩ノ巣原理により、u,v (u<v; u,vは0以上n以下の整数)が存在して、
と
は同じ色で塗られている。したがって、
は全て同一色で塗られている。また、はIに含まれている。よって、2.が示された。
関連項目
参考文献
- ^ Graham, R. L.; Rothschild, B. L. (1974). “A short proof of van der Waerden's theorem on arithmetic progressions”. Proc. American Math. Soc. 42 (2): 385–386. doi:10.1090/S0002-9939-1974-0329917-8.
- ^ Van der Waerden's theorem
- 『数論の3つの真珠』(ア・ヤ・ヒンチン 著、蟹江幸博 訳・解説、日本評論社)p.10
- [1] p.5
「Van der Waerden's theorem」の例文・使い方・用例・文例
- Jeb Andersonは現在シドニーにいる。
- 6 月4 日―Mertonスタジアムの取り壊しに伴い、6 月15 日から3 週間に渡り、Central通りとMerton通りの間と、9 番通りと11 番通りの間の全区域が通行止めになると、Bordertown交通局(BTA)が火曜日に発表した。
- Mozilla Foundationは5月1日、メール/ニュースクライアントソフトの最新版「Thunderbird 2.0.0.14」をリリースした。
- 混合様式 《古代ローマ建築の様式で, イオニア様式 (Ionic order) とコリント様式 (Corinthian order) の折衷様式》.
- 戦争そのものを愛して戦争をしたのは Alexander and Charles 12
- 英国では『cinder blocks(軽量コンクリートブロック)』を『breeze blocks』という
- パリで、地下鉄システムは『metroメトロ』と呼ばれている、そして、ロンドンで、それは『tubeチューブ』または『underground地下鉄』と呼ばれる
- ペニシリンV(商標名Ledercillin VK)の形
- ヘイゼルナッツ木(属ハシバミ)とハシバミの木(オーストラリアのPomaderris属)の微粒子木
- 食用の肉のベリーがbladderlike殻に同封した類概念Physalisベアリングの多数の世界的な年に一度の、または、多年草のハーブのいずれも
- Van der Waerden's theoremのページへのリンク