MOSFETの動作
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/06/01 07:07 UTC 版)
理論的にn型とp型の違いはドレイン-ソース間の電流に寄与するキャリアの違いだけなので、ここではn型についてのみ扱う。 MOSFETではゲートと基材の間に構成されたキャパシターにより、ゲートに正電圧が印加された場合、p型のサブストレートと絶縁層の境界面に電子を引き寄せドレイン-ソース間に反転層(n型)を作り上げる事でソース-ドレイン間を高コンダクタンスにする。ドレイン-ソース間電圧(Vds)が比較的低く、ゲート-ソース間の電圧(Vgs)からしきい値電圧(Vth)を引いた値(Vgs-Vth)がそれを超えている領域を線形領域と呼ぶ(図2)。線形領域においてはゲート電圧に比例して反転層が厚みを増すため、コンダクタンスがゲート電圧に比例して上がる。 一方、ドレイン-ソース間電圧(Vds)がゲート-ソース間の電圧(Vgs)からしきい値電圧(Vth)を引いた値(Vgs-Vth)を上回るとドレイン領域近辺には反転層が形成されなくなる。この状態をピンチオフしたと言う。この状態(ピンチオフ)よりドレイン電圧が高い領域を飽和領域と呼び、MOSのコンダクタンスは反転層の長さによって一定に決まる(図3)。この状態では定電流源として扱われる。 ここで注意したいのは、MOSFETのしきい値電圧は、基本的にはゲート・ソース間の条件で決まるのであり、ピンチオフと言うのは単にドレイン側で反転層が形成される条件が満たされなくなったと言う事である。従って、ピンチオフしてドレイン側でチャネルが消失しても、電子の流れが止まるというものではない。ゲート・ソース間にしきい値電圧以上の電圧が印加されていればソース端では反転層が形成され、電子はソースから流入する。ピンチオフ点以降のドレイン側でチャネルが消失してもドレイン側に大きな電界は存在するので流入した電子はドレイン電極に向かって加速される。また、ピンチオフ以降でドレイン電圧がさらに高くなっても、それはドレイン側の空乏層が拡大するだけで、ソース側の電子の流入には(基本的には)関係しないので定電流源として動作すると考えてよい。 しかし、微細加工が進みチャネル長が短くなると、ドレイン電圧を高くするにつれてピンチオフ条件が成立する場所がドレイン端からソース方向に移動することにより、実効的なチャネル長が短くなり、ドレイン電流が増加する効果が現れる。これをチャネル長変調効果と呼び、バイポーラ・トランジスタのアーリー効果に相当する。チャネル長変調効果を低減するには、なるべくチャネル長を大きく設計することが必要となる。
※この「MOSFETの動作」の解説は、「MOSFET」の解説の一部です。
「MOSFETの動作」を含む「MOSFET」の記事については、「MOSFET」の概要を参照ください。
- MOSFETの動作のページへのリンク