ゴロム符号
ゴロム符号(ゴロムふごう、Golomb coding)とは、南カリフォルニア大学のソロモン・ゴロムによって開発された、幾何分布に従って出現する整数を最適に符号化することのできる整数の符号化手法である。 ゴロム符号と類似の手法にライス符号があるが、ゴロム符号の特別な場合がライス符号になるため、ライス符号のことをゴロム・ライス符号(Golomb-Rice coding)と呼称することが多い。特にライス符号は符号化・復号の計算量が少ないことが特徴。圧縮率は幾何分布の時はハフマン符号と同一で、それ以外ではそれよりも悪い。
符号化の原理
符号化のパラメータとして、1 以上の整数値 m を用いる。
m > 1 のとき、符号化対象とする整数値 x(≧0) に対して、x を m で割った商を q 余りを r とする。
- 商 q をunary符号を用いて符号化する。
- 余り r は
この項目は、コンピュータに関連した書きかけの項目です。この項目を加筆・訂正などしてくださる協力者を求めています(PJ:コンピュータ/P:コンピュータ)。
- ゴロム符号のページへのリンク