電子スピンによる磁性
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/11/19 01:10 UTC 版)
不対電子(ふついでんし)多くの原子が2つずつ対となる電子を電子軌道に留めている。これら、対となる電子はその各電子のスピンをそれぞれの電子がお互いに打ち消しあうために、外部から見て磁気は発生しない。つまりヘリウム原子は1s軌道に2つの電子が入って対(つい)となっているので磁気は生じない。水素原子は1s軌道に電子が1つしかない、つまり不対電子であるために磁気を生じる。これは、単独の原子の場合であるが、たとえばヘリウム原子はイオンとなってHe+の状態では1sに不対電子が生じるので磁気が生じる。また、水素原子も2つ集まったH2という水素分子になれば、共有結合の1s電子がお互いの1s軌道を埋めあうために不対ではなくなり磁気は生じなくなる。水素分子H2が酸素原子Oと化合した水分子H2Oも水素原子の1s軌道が少し曲がったくらいでは磁気は生じない。 より重い原子では、3d軌道や4f軌道に不対電子があるために磁性が生じている場合が多い。その典型は、鉄である。26Fe3+は3d軌道の1個と4s軌道の2個の電子が欠けることで3d軌道の5個の電子がすべて不対電子となる。これは受け入れられる電子が多い電子軌道の特徴的な差であり、単純なs軌道では対となればスピンを打ち消しあうがd軌道では5つの電子がすべて同じ方向のスピンを持っており強い磁性を発揮する。3d軌道に外殻電子を持つ原子がイオンとなると鉄同様の強い磁気を持つ。これらのイオン原子を磁気イオンという。22Ti3+、24Cr3+、25Mn2+が磁気イオンである。面白いことにd軌道の閉殻となる数10の半数の5がちょうど26Fe3+でここで磁気のピークとなりあとはd軌道に(6は欠番)7個電子が入った27Co2+、8個入った28Ni2+、9個入った29Cu2+と続き、不対電子が減ることで順に磁気は弱くなる。30Zn2+では3d軌道に電子が10個すべて埋まるために不対電子が無くなって磁気は発生しなくなる。 ここ迄は、原子や分子、イオン単体の場合であるが、もっと大きな集団の場合を考える。磁気イオンがイオン結晶となれば、磁性は各磁気イオンに温存されるので磁気は局在して発生する。これを局在電子という。またイオン状態ではなく鉄などの強磁性体が単なる金属のかたまりとなった場合は、金属特有の伝導電子が原子の間に漂っているので、不対電子が局在できず、そのために磁気は金属全体に広がって発生する強磁性の電子伝導モデルといわれる状態になる。
※この「電子スピンによる磁性」の解説は、「強磁性」の解説の一部です。
「電子スピンによる磁性」を含む「強磁性」の記事については、「強磁性」の概要を参照ください。
- 電子スピンによる磁性のページへのリンク