空間充填曲線
(空間充填関数 から転送)
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/05/31 04:46 UTC 版)

解析学において、空間充填曲線(くうかんじゅうてんきょくせん、英: space-filling curve)とは、値域が2次元の単位正方形(あるいはより一般に n 次元の単位超立方体)全体を含む曲線である。ジュゼッペ・ペアノが最初にその1つを発見したので、2次元平面における空間充填曲線はペアノ曲線と呼ばれることもあるが、この名称はペアノによって発見された特定の空間充填曲線の例も指す。
定義
直観的には、2次元や3次元(あるいはより高次元)内の連続曲線は、連続的に動く点の軌跡と思うことができる。この考えに内在する曖昧さを排除するため、ジョルダンは1887年に次の厳密な定義を導入し、それ以来これは連続曲線の概念の正確な記述として採用されている:
最も一般的な形では、そのような写像の値域は任意の位相空間でよいが、最もよく研究される場合は、値域は2次元平面(このとき平面曲線)や3次元空間(空間曲線)のようなユークリッド空間に含まれる。
曲線を写像自身ではなく写像の像(写像の取る値全ての集合)と同一視することがある。端点をもたない曲線を実数直線(あるいは単位開区間 (0, 1))上の連続写像と定義することもできる。
歴史
1890年、ペアノは今ではペアノ曲線と呼ばれる、単位正方形のすべての点を通る連続曲線を発見した[1]。彼の目的は単位区間から単位正方形の上への連続写像を構成することであった。ペアノは、単位区間内の無限個の点は単位正方形のような任意の有限次元多様体の無限個の点と同じ濃度であるという、ゲオルク・カントールによる以前の反直観的結果に動機づけられた。ペアノが解いた問題はそのような写像が連続にできるかどうか、すなわち空間を埋める曲線があるかどうかであった。ペアノの解は単位区間と単位正方形の間の連続な1対1対応ではなく、実際そのような対応は存在しない(下記参照)。

曲線に「厚さ」と1次元性の漠然とした概念を関連付けることが一般的であった。すべての通常遭遇する曲線は区分的に微分可能(つまり区分的に連続微分を持つ)であったが、そのような曲線は単位正方形全体を埋められない。したがって、ペアノの空間充填曲線は非常に反直観的であった。
ペアノの例から、値域が n 次元超立方体(n は任意の正整数)を含む連続曲線を作るのは容易であった。ペアノの例を端点の無い連続曲線に拡張し、n 次元ユークリッド空間(n は 2 や 3 や他の任意の正整数)全体を埋め尽くすことも容易であった。
ほとんどの有名な空間充填曲線は区分線型連続曲線の列のどんどん空間を埋める極限に近似していく極限として反復的に構成される。
ペアノの革新的な論文は彼の構成の図を全く含まず、三進展開と鏡映作用素を用いて定義された。しかし図的構成は彼に完全に明らかだった――Turin にある彼の家に曲線の絵を示す装飾用のタイルをはったのである。ペアノの論文はまた手法は3以外の奇数の底に明らかに拡張できると述べることで終わる。図的可視化に訴えることを避けた彼の選択は、疑いようもなく、図に全く依らない根拠の確かな完全に厳密な証明の欲求によって動機付けられた。当時(一般位相の基礎付けの開始頃)、図的議論はまだ証明に含まれていたが、しばしば反直観的な結果を理解する障害となりつつあった。
一年後、ダヴィット・ヒルベルトは同じジャーナルにペアノの構成の変種を出版した[2]。ヒルベルトの論文は構成手法を可視化する助けとなる絵を含む最初のものであった。その絵は本質的にはここに描かれているのと同じである。しかしながら、ヒルベルト曲線の解析的な形は、ペアノのものよりも複雑である。
空間充填曲線の構成の概略
Java applets:
- Peano Plane Filling Curves at cut-the-knot
- Hilbert's and Moore's Plane Filling Curves at cut-the-knot
- All Peano Plane Filling Curves at cut-the-knot
- 空間充填関数のページへのリンク