未定乗数法とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > 未定乗数法の意味・解説 

ラグランジュの未定乗数法

(未定乗数法 から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2025/03/01 02:59 UTC 版)

ラグランジュの未定乗数法(ラグランジュのみていじょうすうほう、: method of Lagrange multiplier)とは、束縛条件のもとで最適化を行うための数学解析学)的な方法である。いくつかの変数に対して、いくつかの関数の値を固定するという束縛条件のもとで、別のある1つの関数の極値を求めるという問題を考える。各束縛条件に対して定数(未定乗数Lagrange multiplier)を用意し、これらを係数とする線形結合を新しい関数(未定乗数も新たな変数とする)として考えることで、束縛問題を普通の極値問題として解くことができる方法である。

定理

ラグランジュの未定乗数法は、次のような定理として記述される。

2次元の場合

束縛条件 g(x, y) = 0 の下で、f(x, y) が最大値となる点 (a , b) を求める問題、つまり

maximize
図1:束縛条件 g (x,y ) = c に対して関数 f (x,y ) を最大化する場合。
図2:図1の等高線地図。赤い線は束縛条件 g(x, y) = c を示す。青い線は f(x, y) の等高線。赤い線が青い等高線に接する点が解。

簡単のため2次元の場合を考えよう。g (x, y) = c(ここで c は与えられた定数である)という条件の下、関数 f (x, y) を最大化するものとしよう。f の値を高さとしたグラフを考えると、高さが df の等高線は f (x, y) = d で与えられる。ここで、任意の曲線に沿って移動する点を考えると、この点が等高線を横切る場合、必ず f (x, y) は増加、もしくは減少するが、この点が等高線に沿って移動する場合は f (x, y) は変化しないことが分かる。この条件と通常の極値の条件を合わせて考えれば、曲線上で f (x, y) が最大をとる点では、f の等高線の接線と曲線の接線が平行となっているか、f の勾配がゼロとなっていることが分かる。ここで g (x, y) = c の接線は、g の勾配ベクトル x,y g と直交し、また f の等高線 f (x, y) = d の接線は f の勾配ベクトル x,y f と直交することを踏まえると、前述の条件は

この節の加筆が望まれています。 2021年10月

解析力学

作用積分S[q] で与えられる物理系に n 個の拘束条件 ϕa(q, t) = 0, (a = 1, ..., n) が課せられているとき、この系の運動方程式は λa を未定乗数とする条件付き変分

Optimization computes maxima and minima.
非線形(制約付き)
凸最適化
組合せ最適化
メタヒューリスティクス



英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

カテゴリ一覧

すべての辞書の索引



Weblioのサービス

「未定乗数法」の関連用語











未定乗数法のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



未定乗数法のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのラグランジュの未定乗数法 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS