時計の文字盤の表示
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/06/27 08:34 UTC 版)
合同類における算術の一つの例をアナログ時計の文字盤を使って図示することができる。時計の文字盤には「時間」に応じて 1 から 12 までの番号が振られていて「12時」は「0時」と同一であり、「0時」から始めて「1時間」加えるごとに順番に、12の数字のそれぞれを辿ることができる。 「時間」を足し算するには、加えられるほうの時間を起点にして、加えたい時間ぶんだけ時計を進めればよい。たとえば 4 + 5 がいくつになるのか知りたければ、「4時」のところを起点にして「5時間」後にいる場所が「9時」のところなので 4 + 5 = 9 という具合である。これで 9 + 5 がいくつになるか計算してみよう。同様に「9時」のところを基点に、針を「5時間」進めると「2時」のところにいるはずである。つまり、この系のなかでは 9 + 5 = 2 ということになる。さて、どうしてこうなるのか少し考えてみよう。単純に 5 と 9 とを足し合わせると 14 となるのだが、時計の盤面では「14時」は「2時」と一致するから、ここでは 14 = 2 であったわけで、ここでの加法はふつうの和を計算してから12を引けるだけ引いたものということになる。これは 12 を法とする剰余類に相当し、このタイプの足し算は「12 を法とする加法(modulo 12 の加法)」と呼ばれる。このとき、12 を加えることは、どの「時間」x についても 12 + x = x となるから、何の変化ももたらさない。これで「12時」の数字が「0時」のところに配置される理由を説明できる。 乗法は加法から得られる。例えば、3 × 4 を計算したければ、これを 3 + 3 + 3 + 3 という和の形に書き直して、12 を引けばよい。4 × 4 なら「16時」は modulo 12 で「4時」なので 4 × 4 = 4 となる。 そういうわけで、「時間」にこのような加法や乗法を考えたものとして剰余類環 (Z/12Z, +, ×) を表すことができる。 本節で 12 としていたところを、任意の自然数 n に置き換えても同じことができる。たとえば Z/4Z = {0, 1, 2, 3} においては 1 = 1, 2 = 1 + 1, 3 = 1 + 1 + 1, 0 = 1 + 1 + 1 + 1 である。
※この「時計の文字盤の表示」の解説は、「剰余類環」の解説の一部です。
「時計の文字盤の表示」を含む「剰余類環」の記事については、「剰余類環」の概要を参照ください。
- 時計の文字盤の表示のページへのリンク