微分としての性質
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2019/04/05 14:41 UTC 版)
「勾配 (ベクトル解析)」の記事における「微分としての性質」の解説
U を Rn の開集合とし、関数 f : U → R がフレシェ微分可能とすると、f の全微分は f のフレシェ導関数であり、従って ∇f は U から空間 R への写像で lim h → 0 ‖ f ( x + h ) − f ( x ) − ∇ f ( x ) ⋅ h ‖ ‖ h ‖ = 0 {\displaystyle \lim _{h\to 0}{\frac {\|f(x+h)-f(x)-\nabla f(x)\cdot h\|}{\|h\|}}=0} を満たすものである(中黒はドット積)。 この帰結として、勾配が通常の微分が持つ微分法則を満足することがわかる。 線型性 二つの実数値関数 f, g が点 a ∈ Rn において微分可能で、α, β が実定数であるとき、線型結合 αf + βg は a において微分可能であり、さらに ∇(αf + βg)(a) = α∇f(a) + β∇g(a) を満たすという意味で、勾配は線型である。 積の微分法則 f と g が実数値関数で点 a ∈ Rn において微分可能ならば、それらの積 (fg)(x) = f(x)g(x) は a において微分可能で、∇(fg)(a) = f(a)∇g(a) + g(a)∇f(a) なる積の法則を満たす。 連鎖律 Rn の部分集合 A 上で定義された実数値関数 f : A → R が点 a において微分可能とする。勾配に関する連鎖律には 2 つの形が存在する。 1 つ目は、関数 g を曲線の媒介変数表示、即ち R の部分集合 I から Rn への関数 g : I → Rn とするとき、g が g(c) = a なる I の点 c で微分可能ならば、(f○g)'(c) = ∇f(a) · g'(c) が成立するというもの。ただし ○ は写像の合成である。より一般に、I ⊂ Rk である場合にも ∇(f○g)(c) = t(Dg(c))(∇f(a)) が成立する。ただし t(Dg) は転置関数行列である。 二つ目の連鎖律は、R の部分集合 I 上の実数値関数 h: I → R が f(a) ∈ I なる点において微分可能ならば ∇(h○f)(a) = h'(f(a))∇f(a) というものである。
※この「微分としての性質」の解説は、「勾配 (ベクトル解析)」の解説の一部です。
「微分としての性質」を含む「勾配 (ベクトル解析)」の記事については、「勾配 (ベクトル解析)」の概要を参照ください。
- 微分としての性質のページへのリンク