実と複素埋め込みの古典論とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > ウィキペディア小見出し辞書 > 実と複素埋め込みの古典論の意味・解説 

実と複素埋め込みの古典論

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/07/30 15:31 UTC 版)

体のテンソル積」の記事における「実と複素埋め込みの古典論」の解説

代数的整数論において、体のテンソル積は(暗にしばしば)基本的なツールである。K が Q の有限 n 次の拡大であれば、 K ⊗ Q R {\displaystyle K\otimes _{\mathbb {Q} }\mathbb {R} } は常に R か C に同型な体たちの積である。総実体実数体のみが現れるのである一般には r1 個の実数体と r2 個の複素数体があり、r1 + 2r2 = n で、これは次元数えることによってわかる。体因子古典的文献において記述されているように実埋め込み複素共役埋め込みの対と 1 対 1 の対応にある。 このアイデアは K ⊗ Q Q p {\displaystyle K\otimes _{\mathbb {Q} }\mathbb {Q} _{p}} にも適用される、ただし Qpp-進数体である。これは Qp有限拡大の積で、Q 上の p-進距離拡大対する K の完備化1 対 1 の対応にある。

※この「実と複素埋め込みの古典論」の解説は、「体のテンソル積」の解説の一部です。
「実と複素埋め込みの古典論」を含む「体のテンソル積」の記事については、「体のテンソル積」の概要を参照ください。

ウィキペディア小見出し辞書の「実と複素埋め込みの古典論」の項目はプログラムで機械的に意味や本文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ



英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「実と複素埋め込みの古典論」の関連用語

実と複素埋め込みの古典論のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



実と複素埋め込みの古典論のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
Text is available under GNU Free Documentation License (GFDL).
Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、Wikipediaの体のテンソル積 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。

©2025 GRAS Group, Inc.RSS