実の場合のストーン・ワイエルシュトラスの定理
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/12/09 14:45 UTC 版)
「ストーン=ワイエルシュトラスの定理」の記事における「実の場合のストーン・ワイエルシュトラスの定理」の解説
閉区間[a,b]上の連続関数のなす集合は sup-ノルムによってバナッハ環になる。つまり、このノルムに関して位相線型空間として完備であり、各点での値の積をとることによって定まる環の構造について ||fg|| < ||f||·||g||が成り立っているということである。ワイエルシュトラスの近似定理とは、このバナッハ環の中で多項式関数のなす部分環が稠密であるということをのべている。 ストーンは任意のコンパクトハウスドルフ空間 X に対し、その上の実数値連続関数のなす環 C(X,R) を考察した。この環は sup-ノルムに関してバナッハ環となっているが、その部分環 A が稠密になるための決定的な条件とは A が X の点を分離すること、であるということをストーンは見いだした。これはすなわち、 X の異なる二つの点 x, y について A の元 f であって f(x) と f(y) とが異なるようなものが存在することである。 ストーン・ワイエルシュトラスの定理は以下のように述べられる。 X をコンパクトハウスドルフ空間とし、A を C(X,R)の部分環であって 0 でない定数関数を含むものとせよ。そのとき、A が X の点を分離することと、Aが C(X,R)で稠密であることとは同値である。 C(X,R)の部分環A に対し、Aの任意の元が連続になるような最も粗い位相をX上に考えると、上の条件はこの位相がハウスドルフ位相になることと言い換えられる。したがって、ストーンが述べていることだが、この位相が X の元々の位相に一致することと、定数関数を含む部分環 A の稠密性とは同値になる。 Xとして閉区間 [a,b]をとるとき、多項式関数のなす環は定数関数を含んでかつ X の点を分離するので、ストーン・ワイエルシュトラスの定理はワイエルシュトラスの近似定理の拡張になっている。
※この「実の場合のストーン・ワイエルシュトラスの定理」の解説は、「ストーン=ワイエルシュトラスの定理」の解説の一部です。
「実の場合のストーン・ワイエルシュトラスの定理」を含む「ストーン=ワイエルシュトラスの定理」の記事については、「ストーン=ワイエルシュトラスの定理」の概要を参照ください。
- 実の場合のストーン・ワイエルシュトラスの定理のページへのリンク