総実体
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/11/28 14:15 UTC 版)
ナビゲーションに移動 検索に移動数論において、代数体 K が総実(そうじつ、英: totally real)であるとは、K の複素数体への各埋め込みに対し、その像が実数体に含まれることをいう。同値な条件は、すべての根が実であるような整数多項式のある1つの根によって、K が Q 上生成されることである。あるいは、K を Q 上 R とテンソルした代数が R のコピーの直積になることである。
例えば、Q 上次数が 2 の二次体 K は、正あるいは負のどちらの数の平方根が Q に添加されたかに応じて、実数体の部分体(このとき総実)あるいは虚数を含む体となる。三次体の場合には、Q 上既約な三次の整数多項式 P は少なくとも1つの実根を持つ。P が1つの実根と2つの虚根を持つならば、その実根を添加することによって定義される Q の三次拡大は、実数体の部分体であるにもかかわらず、総実ではない。
総実体は代数的整数論において重要で特別な役割を果たす。Q のアーベル拡大は総実であるか、あるいは総実な部分体を含みこの部分体上2次拡大である。
有理数体上ガロワな任意の数体は総実であるかまたは総虚でなければならない。
関連項目
参考文献
- Hida, Haruzo (1993), Elementary theory of L-functions and Eisenstein series, London Mathematical Society Student Texts, 26, Cambridge University Press, ISBN 978-0-521-43569-7
総実体
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/11/18 09:00 UTC 版)
Deligne & Ribet (1980) では、前に行われている Serre (1973) に立脚し、総実体の解析的 p-進L-函数を構成した。Barsky (1978) と Cassou-Noguès (1979)は独立に同じ結果を導き出したが、このアプローチは、新谷卓郎の L-値の研究のアプローチに従っている。
※この「総実体」の解説は、「p-進L-函数」の解説の一部です。
「総実体」を含む「p-進L-函数」の記事については、「p-進L-函数」の概要を参照ください。
- 総実体のページへのリンク