固体中の減速プロセス
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/08/13 01:06 UTC 版)
減速プロセスの開始時にはまだエネルギーが高く、イオンは主に電子的に減速されながらほぼ直線的に進む。イオンが十分に減速すると、原子核との衝突(核的阻止)が起こりやすくなっていって最終的に減速過程を支配する。イオンと衝突して大きな反跳エネルギーを受けた固体原子はその格子位置から弾き出され、物質中でさらなる衝突カスケード(英語版)を生み出す。金属や半導体にイオン注入を行うときに発生する損傷の主要因は衝突カスケードである。系内に弾き出された原子すべてのエネルギーが弾き出しのしきい値(英語版)を下回るとそれ以上損傷が発生しなくなり、核的阻止の概念は意味を失う。核的衝突によって物質中の原子に蓄積されるエネルギーの総量は nuclear deposited energy と呼ばれる。 右図のインセットは固体に入射したイオンの飛程の典型的な分布を示している。たとえば、1 MeVのシリコンイオンがシリコン固体中で減速されるとこのような分布になる。一般に1 MeVのイオンの平均飛程はμmの範囲になる。
※この「固体中の減速プロセス」の解説は、「阻止能」の解説の一部です。
「固体中の減速プロセス」を含む「阻止能」の記事については、「阻止能」の概要を参照ください。
- 固体中の減速プロセスのページへのリンク