図形の相似
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/03/22 00:33 UTC 版)
![]() | この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。(2014年3月) |

2つの図形 F と G が相似(そうじ、英: similar)であるとは、一方を適当に点スケール変換(拡大 (enlarging) または縮小 (shrinking))して他方と合同になる(すなわち、有限回の平行移動、回転移動、対称移動により重なる)ことである。それらの「形」が等しいことであるとも言い換えられる。
記号では、欧米では F ∼ G と表すが、日本では「∼」でなく S を横に倒したような記号「∽」で表すことが多い。「∼」「∽」のいずれもゴットフリート・ライプニッツが発明したと言われる[1]。
F を r倍-点スケール変換して G と合同になるとき、1 : r を F と G の相似比という。相似な図形の対応する線分(辺)の長さの比は一定であり、相似比に等しい。
直線図形(多角形など)においては、相似な図形の対応する角度の大きさは等しくなる。
図形の相似の概念は図形の合同(r = 1 の場合)の拡張であるが、それらを区別するため、図形の相似の定義から図形の合同を除く流儀もある。あまり本質的ではないので、本稿では r = 1 の場合も相似の定義に含めることとする。
例
これらはそれぞれ、一方を適当な率で拡大または縮小し、適当に平行移動、回転、鏡映を施すと他方に重なる。このとき双方は形が同じであるが、大きさと向き(平面上では表裏)は異なる。
適当な条件を加えると、それぞれ相似になる。
特に三角形においては、後述するように、相似となるための必要十分条件がよく知られている。
相似比
![]() | この節の加筆が望まれています。 |

相似な図形の対応する線分(辺)の長さの比は一定であり、これを相似比という。特に、相似比 1:1 の図形は合同である。
ある図形をr倍して別の図形と一致したら、それらの相似比は 一般の距離空間 (X, d) において狭義の相似性 (exact similitude) とは距離空間 X からそれ自身への写像であって、任意の距離を特定の同じ(f の縮小因子 (contraction factor) と呼ばれる)スカラー r -倍するものをいう。任意の2点 x, y について
- 図形の相似のページへのリンク