三角形の相似条件
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/06/09 16:11 UTC 版)
△ABC と △DEF が相似であるためには、上記の条件 1. と 2. 全てを満たす必要はない。いくつかの条件を満たせば他方の三角形の形が決まってしまうからである。条件の弱め方は以下の3種類である。 二角相等 (AA):2組の角がそれぞれ等しければ、2つの三角形は互いに相似である。 この条件を満たせば、残りの角の組も等しくなる。 三辺比相等 (SSS):3組の辺の比が互いに等しければ、2つの三角形は互いに相似である。 二辺比夾角相等 (SAS):2組の辺の比とその間の角がそれぞれ等しければ、2つの三角形は相似である。 「図形の合同」も参照
※この「三角形の相似条件」の解説は、「図形の相似」の解説の一部です。
「三角形の相似条件」を含む「図形の相似」の記事については、「図形の相似」の概要を参照ください。
- 三角形の相似条件のページへのリンク