ジャンピング・ジュピター・シナリオ
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/01/10 07:06 UTC 版)
「ニースモデル」の記事における「ジャンピング・ジュピター・シナリオ」の解説
モデルに対する2番目の修正は、巨大氷惑星のうち1つが木星と遭遇し、木星の軌道長半径が「ジャンプ」するという要求から来ている。これはジャンピング・ジュピター・シナリオ(英語版)と呼ばれている。この仮説では、まず巨大氷惑星が土星と遭遇して木星軌道と交差する軌道へ散乱され、これにより土星の軌道は大きくなる。その後巨大氷惑星は木星と遭遇して外側に散乱され、このため木星の軌道は縮小する。そのため、従来のニースモデルのように木星と土星が滑らかに離れていく惑星移動ではなく、段階的に両者の軌道間隔が大きくなるという変化をする。 木星と土星の軌道が段階的に変化を起こすことで、永年共鳴の位置が地球型惑星が存在する領域をゆっくりと掃くように移動して軌道離心率を励起してしまうという問題を回避することができる。また同様に、小惑星帯の天体の軌道要素で軌道傾斜角が大きいものが多くなりすぎるという問題も回避することが出来る。 このモデルにおける巨大氷惑星と木星の遭遇は、木星が自身の不規則衛星を捕獲することを可能にする。木星のトロヤ群天体も木星の軌道がジャンプするこれらの遭遇の後に捕獲されることが可能であり、また巨大氷惑星が散乱されたトロヤ群天体の秤動点のどちらか一方を通過した場合、2つあるトロヤ群の片方はもう一方に比べて数が少なくなる。永年共鳴を起こす位置が小惑星帯を横断する速度が大きい場合、小惑星帯の中心部分から天体が失われるのが抑制される。後期重爆撃期に衝突を起こす岩石天体の大部分は巨大惑星が現在の位置に到達した際に破壊された小惑星帯内側の領域から来ていると考えられ、それらの残りは現在ハンガリア群を形成している。いくつかのD型小惑星は、巨大氷惑星が小惑星帯を横切っている最中に遭遇を起こすことによって、2.5 au 以内の小惑星帯の内側に留まることになったと考えられる。
※この「ジャンピング・ジュピター・シナリオ」の解説は、「ニースモデル」の解説の一部です。
「ジャンピング・ジュピター・シナリオ」を含む「ニースモデル」の記事については、「ニースモデル」の概要を参照ください。
- ジャンピング・ジュピター・シナリオのページへのリンク