0の0乗とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > 0の0乗の意味・解説 

0の0乗

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2025/09/21 02:48 UTC 版)

00(れいのれいじょう)は、累乗あるいは指数関数において、底を 0、指数を 0 としたものである。その値は、代数学組合せ論などの文脈では通常 1 と定義される[注 1]一方で、解析学の文脈では二変数関数 xy が原点 (x, y) = (0, 0) において連続とならないため定義されない場合もある。

背景

実数 x正整数 nは、素朴には、n 個の x を掛け合わせたものである。厳密には、次のように再帰的に定められる。

関数 z = xy をプロットしたもの。xy が様々な関係を保って原点に接近するとき(赤や緑の曲線)、z は任意の極限値をとり得る。緑の曲線は、そのうちで z の極限が 1 となるものである。

冪を自然数ではなく実数の範囲で考え、00 を二変数関数 xyx = y = 0 における値だと考えると、次のようになる。

二変数関数 xy は、定義域を D = { (x, y) | x > 0 } ∪ { (0, y) | y > 0 }とした場合には、D 全体で連続となる。しかし、原点 (0, 0) を付け加えて、D′= D ∪ {(0, 0)} を定義域とした場合には、原点における値 00 をどのように定義しても、原点において連続とはならない。それは、D' 内で(原点を通らず)原点に近づく経路によってその極限値が異なるからである。例えば、y 軸 (x = 0) に沿って原点に近づくときの極限値は

であるが、x 軸 (y = 0) に沿って原点に近づくときの極限値は

である[注 6]。画像はこの二変数関数 z(x, y) = xy のグラフであり、原点に近づくときの経路によって異なる極限値を持つことが見て取れる。関数の連続性を重視する観点からは、00 をどのような値にすることもできない。

また 00 という記号によって、関数 f(x)g(x) の(x がある有限値に向かう、あるいは ±∞ に向かうときの)極限が共に 0 であるときの、f(x)g(x) の極限を考えていることを表すことがある。このとき 00 はいわゆる不定形英語版、すなわちこの f(x)g(x) の極限は一定しないのであって、実際任意の非負の実数値や +∞ にもなりうるし、振動することもある。例えば、

(ここで a は任意の実数)となり、また

は振動する。ここで、x → 0+x正の方向から 0 に近づく極限を表す。

極限が 1 になるための十分条件はいくつか知られている。例えば f および g がともに x = 0 において実解析的であり、ある正数 b > 0 に対し開区間 (0, b)f > 0 であれば、(x → 0+ のとき f(x) → 0, g(x) → 0 であれば)f(x)g(x)x → 0+ のときの極限は必ず 1 である[6][7][8]

複素解析における扱い

複素領域において、0 でない z に対し、関数 zw を、log z分枝を選び、zwew log z と定義できる。これは 0w を定義していない、なぜならば z = 0 において定義された log z の分枝は存在せず、したがって当然 0 の近傍で定義された log z の分枝も存在しないからである[9]。したがってこの意味で 0w は定義されないのであるが、著者によっては別途、

  • Re w > 0 に対しては 0 と定義したり[10]
  • w ≠ 0 に対しては 0 と定義したり[11]

している。

コンピュータにおける扱い

いくつかのプログラミング言語00 を定義しており、その多くは 1 としている。1 と定義しているプログラミング言語は、APLCommon LispHaskellJJavaJavaScriptJuliaMATLABMLPerlPythonRRubyScheme であり、電卓では、Microsoft WindowsおよびGoogleの電卓機能[12]などである。Microsoft Excel では、ワークシート上で =0^0 という数式を入力すると #NUM! というエラーを返すが、同ソフトウェアに搭載されている VBA では1と定義されている[注 7]Mathematica は、a変数または 0 でない数のときは a0 を 1 と計算するが、00 は Indeterminate(不定)と返す。MapleMuPADはこれらを共に 1 と計算する。Wolfram Alpha ではundefinedと表示される。

脚注

注釈

  1. ^ 0 と定義される場合もある。
  2. ^ x = 0 のときは 0 = 00 × 0 となってしまうため、00 は任意の値で等式が成り立ち、この方針で 00 を「自然」に定義することはできない。
  3. ^ この定義は半群における積の結合性より意味を持つ。
  4. ^ さらに a が逆元を持つならば、それを a−1 と表記し、負の整数 n に対して an = (a−1)n と表記する。
  5. ^ 整数の全体や実数の全体など、あるいは一般に単位元を持つ結合環は、乗法について零元を持つモノイドをなす。
  6. ^ ここに、x → +0x が正の方向から 0 に近付くことを表す。なお、負の数 y に対して 0y は定義されない。
  7. ^ 具体的には、Visual Basic Editor (VBE) のイミディエイトウィンドウ上で ?0^0 と打ち、Enter を押すと 1 と出てくる。

出典

  1. ^ Knuth 1992.
  2. ^ グレアム, パタシュニク & クヌース 1993.
  3. ^ Grillet 1995, p. 6.
  4. ^ N. Bourbaki (2004). Theory of Sets. Elements of Mathematics. Springer. p. 164. ISBN 978-3-540-22525-6 
  5. ^ Daniel W. Cunningham (2016). Set Theory: A First Course. Cambridge University Press. pp. 59, 221. ISBN 978-1-107-12032-7 
  6. ^ sci.math FAQ: What is 0^0?
  7. ^ Rotando & Korn 1977.
  8. ^ Lipkin 2003.
  9. ^ 神保 2003, pp. 44–45.
  10. ^ "Since ln 0 does not exist, 0z is undefined. For Re z > 0, we define it arbitrarily as 0."(ln 0 は存在しないから、0z は定義されていない。Re z > 0 に対しては、0 と定義する。)(Carrier, Krook & Pearson 2005, p. 15)
  11. ^ "For z = 0, w ≠ 0, we define 0w = 0, while 00 is not defined."(z = 0, w ≠ 0 に対しては、0w = 0 と定義するが、00 は定義しない。)(Gonzalez 1991, p. 56).
  12. ^ Google電卓機能による 0^0の計算結果

関連資料

関連項目

外部リンク




英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「0の0乗」の関連用語

0の0乗のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



0の0乗のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの0の0乗 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS