一般化されたストークスの定理 トポロジーの準備; 鎖を介した積分

一般化されたストークスの定理

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/04/01 07:19 UTC 版)

トポロジーの準備; 鎖を介した積分

M を滑らかな多様体とする。M の(滑らかな)特異 k -シンプレックスは、Rk の標準単体から M への滑らかな写像で定義される。M の特異 k 英語版の群 Ck(M, Z) は、M の特異な k 単体の集合上の自由アーベル群として定義される。これらの群は、境界写像 とともに鎖複体を定義する。対応するホモロジー(またはコホモロジー)群は、通常の特異ホモロジーHk(M, Z)(または特異コホモロジー群 Hk(M, Z))と同型であり、M の滑らかな単体ではなく連続な単体を使用して定義される。

一方、外微分 d を接続写像として持つ微分形式は、ド・ラームコホモロジーHk
dR
(M, R)
を定義する余鎖複体を形成する。

微分 k 形式は、Rk に引き戻すことにより、自然な方法で k 単体上で積分できる。 線形性を使って拡張すると、鎖をまたいで積分できる。これにより、k 形式の空間から特異な余鎖の k 番目の群 Ck(M, Z)Ck(M, Z)上の線形汎関数への線形写像が得られる。 言い換えれば、k 形式 ωk 鎖上で

で汎関数を定義する。一般化されたストークスの定理によれば、これはド・ラームコホモロジーから実係数の特異ホモロジーへの鎖写像である。外微分 d は微分形式の 双対のように振る舞う。これにより、ド・ラームコホモロジーから特異ホモロジーへの準同型が得られる。 微分形式のレベルでは、これは

  1. 閉形式、つまり dω = 0境界にわたる積分、つまり多様体にわたる ∂∑
    c
    Mc
    、でゼロとなる
  2. 完全形式、つまり ω = dσ は、サイクル全体にわたる積分、つまり境界の合計が空集合になる場合:
    c
    Mc = ∅
    、でゼロとなる

を意味する。

ド・ラームの定理は、この準同型が実際には同型であることを示している。したがって、上記の1と2の逆が成り立つ。言い換えると、{ci}k 番目のホモロジー群を生成するサイクルである場合、対応する実数 {ai} に対して閉形式 ω が存在し

となる。この形式は一意で完全形式である。 滑らかな多様体上の一般化されたストークスの定理は、滑らかな多様体の鎖上のストークスの定理から導き出すことができ、その逆も可能である[11]。正式に述べると、後者は次のように述べている[12]

定理 (鎖に対するストークスの定理) ― c を滑らかな多様体 M の滑らかな k 鎖、ωM 上の滑らかな (k-1) 形式であるとする。この時次が成り立つ:


  1. ^ 数学者にとってこの事実は既知であるため、周回積分の円の記号は冗長とされしばしば省略される。しかし、熱力学ではがよく現れる(ここで全微分を外微分と混同しないこと)に注意する。積分経路 W は高次元多様体上の1次元の閉曲線である。つまり、熱力学での応用では、U はサンプルの温度 α1 := T 、体積 α2 := V、および電気分極 α3 := P の関数であり、
    であり、円の記号は必要である。たとえば 「積分」仮定の異なる「微分」結果を考慮する場合
  2. ^ γΓはどちらも閉曲線だが、Γは必ずしもジョルダン曲線とは限らない。





英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  
  •  一般化されたストークスの定理のページへのリンク

辞書ショートカット

すべての辞書の索引

「一般化されたストークスの定理」の関連用語

一般化されたストークスの定理のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



一般化されたストークスの定理のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの一般化されたストークスの定理 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS