局所連結空間
(局所連結性 から転送)
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/06/15 06:24 UTC 版)

位相幾何学や数学の他の分野において、位相空間 X が局所連結(きょくしょれんけつ、英: locally connected)であるとは、すべての点が、連結開集合のみからなる近傍基を持つことをいう。
背景
トポロジーの歴史の全体を通して、連結性とコンパクト性は最も広く研究された位相的性質の 2 つであった。実際、ユークリッド空間の部分集合の中でさえこれらの性質の研究、そしてユークリッド計量の特定の形式からのそれらの独立性の認識は、位相的性質したがって位相空間の概念を明確化するのに大きな役割を果たした。しかしながら、ユークリッド空間のコンパクト部分集合の構造はハイネ・ボレルの定理を通してかなり早期に理解されたが、(n > 1 に対して)
局所連結性
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/06/17 15:20 UTC 版)
詳細は「局所連結空間」を参照 連結集合からなる開基を持つ位相空間は、局所連結(きょくしょれんけつ、locally connected)であるという。位相空間 X が局所連結となることと、X のどの開集合に対しても、その任意の連結成分がまた開集合となることとは同値である。連結だが局所連結でない位相空間の例として、再び位相幾何学者の正弦曲線を挙げることができる。 同様にして、弧状連結な部分集合からなる開基を持つ位相空間は局所弧状連結(きょくしょこじょうれんけつ、locally path-connected)であるという。局所弧状連結空間の開集合は、それが連結であるならば弧状連結である。このことは一般に n 次元数空間 ℝn, ℂn が局所弧状連結であることから、その開部分集合についても言える。したがってなお一般に、位相多様体は(各点の近傍が数空間の開集合に同相であるから)すべて局所弧状連結であることが従う。
※この「局所連結性」の解説は、「連結空間」の解説の一部です。
「局所連結性」を含む「連結空間」の記事については、「連結空間」の概要を参照ください。
- 局所連結性のページへのリンク