0次元空間とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > 0次元空間の意味・解説 

0次元

(0次元空間 から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/09/11 13:23 UTC 版)

数学において位相空間が(小さい帰納次元に関して)零次元(れいじげん)または 0 次元(ぜろじげん、英語: 0-dimensional)であるとは、空間の任意の点がその位相に関して開かつ閉近傍からなる基本近傍系を持つことをいう。

あるいは空間の任意の開被覆が、その開集合からなる細分で「空間の各点が細分被覆に属するちょうど一つの開集合のみに属する」という条件を満足するものを持つとき、(ルベーグ被覆次元に関して)零次元であるという。応用上現れる空間のほとんどで(より具体的には、可分かつ距離化可能ならば)この二つの意味の「零次元」は一致する。

ハウスドルフ局所コンパクト空間が零次元であるための必要十分条件は、それが完全不連結であることである。

関連項目




英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「0次元空間」の関連用語

0次元空間のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



0次元空間のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの0次元 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS