距離空間における特徴づけ
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/02/13 08:36 UTC 版)
「コンパクト空間」の記事における「距離空間における特徴づけ」の解説
Xが距離空間(もしくはさらに一般的に一様空間)であれば、上記2つのいずれとも異なる角度からコンパクト性を特徴づける事ができる。距離空間Xがコンパクトである必要十分条件はXが全有界かつ完備である事である。ここで全有界性とは、有界性を強めた条件で、任意のε>0に対し、Xが有限個のε-球の和集合で書ける事を意味する。また完備性はX上のコーシー列が必ず収束する事を意味する。 距離空間においてコンパクトの概念は、点列に対するボルツァーノ・ワイエルシュトラス性、もしくは点列コンパクト性と呼ばれる性質とも同値になる。これは前述したボルツァーノ・ワイエルシュトラス性が点列に対して成立するという趣旨の概念である。この概念は一般にはコンパクト性よりも弱いが、距離空間であればコンパクト性と同値になる事が知られている。
※この「距離空間における特徴づけ」の解説は、「コンパクト空間」の解説の一部です。
「距離空間における特徴づけ」を含む「コンパクト空間」の記事については、「コンパクト空間」の概要を参照ください。
- 距離空間における特徴づけのページへのリンク