抵抗制御とその問題点
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/04/12 05:51 UTC 版)
「バーニア制御」の記事における「抵抗制御とその問題点」の解説
直巻整流子電動機は、電流値が回転速度に反比例する特性を持ち、回転力(トルク)は電流値の2乗に比例することから、始動トルクが大きく、電気車の電動機として望ましい特性を持っている。しかしながら、始動時に定格電圧を作用させると電流やトルクが過大となるため、電動機にかかる電圧を低くして始動する必要がある。ここで、抵抗器を電動機と直列に配置し、電動機に作用する電圧と電流を抑えて始動する方法が抵抗制御である。 電動機は回転速度が上昇すると、電動機内部に逆起電力を生じ、電流およびトルクが減少する。そこで、抵抗制御では速度の上昇に合わせて、設定された一定の限流値まで電流が減少すると、抵抗値を減らして次のノッチに進み、電動機に作用する電圧を上げ、一定の電流(トルク)を確保しながら加速を行う(図1-1)。 抵抗制御における問題点のひとつは、電圧の制御が不連続な段階制御となることである。抵抗制御における回転速度と電流の関係をグラフ化し図1-2に示す。抵抗制御は有限個の抵抗器を切り替えて電圧や電流を制御する方法であることから、抵抗値の切換にともない電流値が急変しグラフはのこぎり状となる。電流値の急変はトルクの急変となることから、加速時にショックをともない乗り心地を損ねる。また、鉄道は鉄の車輪と鉄のレールを用いるため、両者の摩擦力(粘着力と呼ぶ)がきわめて小さく、トルクの急変は空転を引き起こす原因となりかねない。
※この「抵抗制御とその問題点」の解説は、「バーニア制御」の解説の一部です。
「抵抗制御とその問題点」を含む「バーニア制御」の記事については、「バーニア制御」の概要を参照ください。
- 抵抗制御とその問題点のページへのリンク