尖点表現とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > 尖点表現の意味・解説 

尖点表現

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2017/10/23 06:31 UTC 版)

数論における尖点表現(せんてんひょうげん、: cuspidal representations; カスプ表現)は L2-空間に離散的に現れる代数群表現の一種である。「尖点的」というのは、それが古典的なモジュラー形式論に関する尖点形式に関係することに由来する。保型表現の現代的な定式化では、正則函数の表現の代わりに、アデール代数群表現を考えうる。

考えている群が一般線型群 GL2 のときの尖点表現は、尖点形式マース形式に直接に関係する。尖点形式の場合については、各ヘッケ固有形式(アトキン=レーナーの新形式)が尖点表現に対応する。

定式化

G数体 K 上の簡約代数群とし、AKアデール環とする。また、ZG中心、ω を Z(K)\Z(A)× から C× への連続ユニタリ指標とし、アデール群 G(A) 上のハール測度を固定して、G(A) 上の複素数値可測函数 f で以下を満たすもの全体の成すヒルベルト空間 と書く。

  1. すべての に対して、 である。
  2. すべての に対して、 である。
  3. G(A) の任意の真の抛物型部分群に関する任意の冪単根基 U に対して を満たす。

この空間を G(A) 上の中心指標 ω を持つ尖点形式全体の成す空間といい、この空間に属する函数を尖点函数と呼ぶ。この空間は gG(A) の尖点函数 f への作用

で与えることにより、アデール代数群 G(A) のユニタリ表現になる。中心指標 ω を持つ尖点形式の空間はヒルベルト空間の直和

に分解される。ここで和は L2
0
(G(K)\G(A), ω) のすべての既約部分表現 に亘ってとるものとし、mπ は正の整数とする(つまり、各既約表現は有限な重複度で現れる)。G(A) の尖点表現 は、表現 (π, V) の、適当な中心指標に対してこのように得られる部分表現をいう。

上記の分解に現れる重複度 mπ が全て 1 に等しい群は、重複度一性を持つという。

参考文献

  • Bernšteĭn, I. N.; Zelevinskiĭ., A. V. (1976), Representations of the group GL(n; F); where F is a local non-Archimedean field, Uspehi Mat. Nauk, 31 
  • James W. Cogdell, Henry Hyeongsin Kim, Maruti Ram Murty. Lectures on Automorphic L-functions (2004), Chapter 5.

外部リンク




英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「尖点表現」の関連用語

尖点表現のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



尖点表現のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの尖点表現 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS