射影空間との関係
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/05/15 04:30 UTC 版)
任意のアフィン空間は、ある射影空間の部分アフィン空間である。たとえば、アフィン平面は任意の射影平面から一つの直線(とその直線上のすべての点)を取り除くことで得られ、逆にアフィン平面に「無限遠直線」(無限遠直線上の点は直線の(平行移動による)同値類に対応する)を加えた閉包として射影平面を構築することができる。さらに、射影空間における(無限遠点の全体を集合として保つ)射影変換はアフィン空間におけるアフィン変換を引き起こし、逆に任意のアフィン変換は射影変換に一意的に拡張することができる。つまり、アフィン変換の全体は射影変換全体の成す集合の部分集合となっている。このような変換でよく知られたものとして、(射影直線あるいはリーマン球面上の射影変換である)メビウス変換が(複素平面上の変換として)アフィン変換を引き起こすのは、それが無限遠点を動かさないときであり、かつそのときに限る。 しかし、射影空間は「与えられた特定の点を通る」直線の全体として定義されるものであり(ベクトル空間には原点が内在構造として存在するが)アフィン空間にはそのような特別の点は存在しないため、(ベクトル空間の射影化は行えても)アフィン空間の射影化を考えることはできない。したがって射影空間を(ベクトル空間の商ベクトル空間として考えたように)自然にアフィン空間の商アフィン空間として定義することはできない。アフィン空間の点の中からひとつ基点を選び、それを原点とすればアフィン空間はベクトル空間となるから、このベクトル空間に対する射影化を行うことはできるが、この選択はアフィン空間のどの点をとっても構わないため、(圏論的な意味で)自然ではない。
※この「射影空間との関係」の解説は、「アフィン空間」の解説の一部です。
「射影空間との関係」を含む「アフィン空間」の記事については、「アフィン空間」の概要を参照ください。
- 射影空間との関係のページへのリンク