太陽との調整 (-1)
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2016/01/29 13:36 UTC 版)
まず第一は、97日の閏日を400年の間に挿入し、実際の太陽年にできるだけ近くするための補正である。ユリウス暦では4年に一度の閏年を入れた太陽年は平均365.25日で、メトン周期の太陽年は365.25日×19年=6939.75日としていた。しかしリリウス達は当時の数学・科学力を駆使して春分点を基点とした太陽年は365.2425日という数値に落ち着いた。(21世紀初頭の計算では、平均回帰年365.24219日、春分回帰年ならば365.2424日とリリウスの計算に非常に近い値が出ている。)グレゴリオ暦の定めた太陽年365.2425日の0.2425日という端数を解消するために、0.2425=97÷400、つまり97日の閏日を400年の間に導入することとなった。こうしてグレゴリオ暦と太陽年の誤差は3000年に1日という精度にまで上がった。単純な4年ごとのルールでは閏年が400年間で100回になってしまうので、「西暦が4で割り切れるが、100で割り切れる年は閏年としない(例 1900年)。ただし100と400両方で割り切れる年は閏年(例 2000年)」という規則にした。 グレゴリオ暦の閏年にならない百の年には、エパクトも1をひいて補正する。これを太陽方程式(Solar equation)と呼ぶ。グレゴリオ暦の本来の目的が3月の春分頃の朔望月を算出することなので、1、2月のエパクトに関しては正確さにこだわっていない。そのため閏日は2月であるが、年始にエパクトを補正して「その年のエパクト数値は1月1日の月齢に等しい」としている。
※この「太陽との調整 (-1)」の解説は、「エパクト」の解説の一部です。
「太陽との調整 (-1)」を含む「エパクト」の記事については、「エパクト」の概要を参照ください。
- 太陽との調整のページへのリンク