可逆層とは? わかりやすく解説

可逆層

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2016/08/20 06:40 UTC 版)

数学において,可逆層(かぎゃくそう,: invertible sheaf)とは,環付き空間 X 上の連接層 S であって,OX 加群のテンソル積に関して逆元 T が存在するものである.可逆層は直線束という位相的な概念の代数幾何学における対応物である.カルティエ因子英語版との相互作用のため,代数多様体の研究で中心的な役割を果たす.

定義

可逆層 (invertible sheaf) とは,環付き空間 X 上の連接層 S であって,OX 加群のテンソル積に関して逆元 T が存在するものである,つまり,OX に同型な

があって,テンソル積について単位元として働く.最も重要な場合は代数幾何学複素多様体論から来る場合である.それらの理論における可逆層は実際には適切に定式化された直線束である.

実際,可逆層のスキーム論における抽象的な定義は局所自由で階数 1という条件に置き換えることができる.つまり,テンソルの逆元の条件はすると,X 上局所的に,S可換環上の階数 1 の自由加群のなす層であることを導く.例は代数的整数論における分数イデアルから来,定義はその理論を捉える.より一般に,Xアフィンスキーム Spec(R) であるとき,可逆層は R 上の階数 1 の射影加群から来る.

ピカール群

極めて一般的に,X 上の可逆層の同型類たち自身がテンソル積の下でアーベル群をなす.この群はイデアル類群を一般化する.一般にそれは,Picピカール関手英語版として

と書かれる.それは代数曲線ヤコビ多様体の理論も含んでいるから,この関手の研究は代数幾何学において主要な問題である.

X 上のデータによる可逆層の直接構成はカルティエ因子の概念を導く.

関連項目

参考文献


可逆層(invertible sheaf)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/03/05 16:23 UTC 版)

代数幾何学用語一覧」の記事における「可逆層(invertible sheaf)」の解説

階数が 1 の局所自由層乗法群

※この「可逆層(invertible sheaf)」の解説は、「代数幾何学用語一覧」の解説の一部です。
「可逆層(invertible sheaf)」を含む「代数幾何学用語一覧」の記事については、「代数幾何学用語一覧」の概要を参照ください。

ウィキペディア小見出し辞書の「可逆層」の項目はプログラムで機械的に意味や本文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「可逆層」の関連用語

可逆層のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



可逆層のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの可逆層 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
ウィキペディアウィキペディア
Text is available under GNU Free Documentation License (GFDL).
Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、Wikipediaの代数幾何学用語一覧 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。

©2025 GRAS Group, Inc.RSS