代数幾何学用語一覧
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/12/23 01:06 UTC 版)
代数幾何学用語一覧(だいすうきかがくようごいちらん、英: glossary of algebraic geometry)では、代数幾何学で使われる用語を一覧にまとめる。
可換環論用語一覧、古典的代数幾何学用語一覧、多元環論用語一覧も参照。数論的な応用については数論幾何学とディオファントス幾何学の用語一覧参照。
この記事では、簡単のために基底スキームについての明記をしばしば省略する。つまり、ある基底スキーム S 上のスキームのことを単にスキームと言ったり S 射のことを射と言ったりする。
あ行
- 球面多様体(spherical variety)
- 球面多様体とは、正規 G 多様体(G は連結な簡約群)であって G のボレル部分群による稠密な開軌道を持つもの。
- 強変換(strict transform)
- 閉部分スキーム Z に沿ってのブロー・アップ
はコーエン・マコーレイではない。
- 小平次元(Kodaira dimension)
- 1. 半豊富な直線束 L の小平次元(飯高次元とも呼ばれる)とは、L の切断環の Proj の次元のこと。
- 2. 正規多様体 X の小平次元とは、その標準層の小平次元のこと。
- 小平消滅定理(Kodaira vanishing theorem)
- 「小平消滅定理」参照。
- コックス環(Cox ring)
- 斉次座標環の一般化。「コックス環」参照。
- 固有(proper)
- 射が固有とは、分離的かつ絶対閉(任意のファイバー積が閉写像であること)かつ有限型であること。射影的射は固有である。しかし逆は一般には正しくない。「完備多様体」も参照。固有射の深い性質の1つはシュタイン分解の存在である。つまり、ある中間的なスキームが存在して、このスキームへの連結ファイバーを持つ射と有限射に分解できる。
- ゴレンシュタイン(Gorenstein)
- 1. ゴレンシュタイン・スキームとは、局所ネータースキームであってその局所環がゴレンシュタイン環であるもの。
- 2. 正規多様体が ℚ-ゴレンシュタインとは、標準因子が ℚ-カルティエであること(コーエン・マコーレイである必要はない)。
- 3. 標準因子がカルティエのときに正規多様体をゴレンシュタインと呼ぶ人もいる。これは 1. とは不整合な使い方。
- コンパクト化(compactification)
- 例えば「永田のコンパクト化定理」参照。
さ行
- ザリスキー・リーマン空間(Zariski–Riemann space)
- ザリスキー・リーマン空間とは、局所環付き空間であって、その点が付値環であるもの。
- 算術種数(arithmetic genus)
- r 次元射影多様体 X の算術種数とは、
は正則ではない。
- 正則関数(regular function)
- 代数多様体からアフィン直線への射。
- 正則埋入(regular embedding)
- 閉埋入
Weblioに収録されているすべての辞書から代数幾何学用語一覧を検索する場合は、下記のリンクをクリックしてください。

- 代数幾何学用語一覧のページへのリンク