半長軸とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > 半長軸の意味・解説 

楕円

(半長軸 から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2025/04/09 04:12 UTC 版)

円錐切断面の4つのタイプ(放物線(左)、楕円(中央)、(中央)、双曲線(右))

楕円(だえん、正字: 橢圓: ellipse)とは、平面上のある2定点からの距離の和が一定となるような点の集合から作られる曲線である。

基準となる2定点を焦点という。円錐曲線の一種である。

概要

2つの焦点が近いほど楕円はに近づき、2つの焦点が一致したとき楕円はその点を中心とした円になる。そのため円は楕円の特殊な場合であると考えることもできる。

楕円の2焦点を通る直線と楕円の2交点を端点とした線分を長軸という。長軸の長さを長径という。長軸と楕円との交点では2焦点からの距離の差が最大となる。また、長軸の垂直二等分線と楕円の2交点を端点とした線分を短軸という。短軸の長さを短径という。

用語

  • 長軸と短軸の交点は楕円の中心と呼ばれる。
  • 長軸を中心で分けた2つの線分は半長軸と呼ばれ、その長さを長半径という。
  • 短軸を中心で分けた2つの線分は半短軸と呼ばれ、その長さを短半径という。
  • 短径と長径の比は楕円率と呼ばれる。
楕円の長軸(緑線)と短軸(ピンク線)

楕円の方程式

一般形

2次元直交座標系において、楕円の2焦点の座標をそれぞれ

この節の加筆が望まれています。


標準形

原点 O が長軸と短軸の交点となる楕円は、代数的に次のように書ける。これを標準形という。

媒介変数表示により表された楕円上の点Pと媒介変数tの関係。tは点Pとx軸の角度とは異なる。

また、

糸を使った作図例
アルキメデスの楕円コンパスen:Trammel of Archimedesを使った作図例
楕円は内トロコイドの特殊な場合として表される。図は rc = 10, rm = 5, rd = 1 の場合。

2つの焦点に、焦点間距離よりも長い1本の糸の両端をそれぞれ固定し、糸が張る状態で節に取り付けた筆記具を動かす。この他、楕円コンパス、楕円テンプレートなどを使って作図はできる。

また、内トロコイドの特殊な場合に楕円が描画される。

歴史

中国語で楕円の楕は「木の切り株」の意味で「木の切り口」の 形から名付けられたと考えられている。 日本では田畑の実際の形から「飯櫃」「平卵形」などと呼ばれていたが、関孝和は「側円」と呼んだ。江戸時代には側円と呼ばれ明治になって楕円と呼ばれるようになった。

脚注

  1. ^ Weisstein, Eric W. "Gauss-Kummer Series". mathworld.wolfram.com (英語).
  2. ^ Cetin Hakimoglu-Brown iamned.com math page

参考文献

  • 『曲線の事典 性質・歴史・作図法』礒田正美、Maria G. Bartolini Bussi編、田端毅、讃岐勝、礒田正美著:共立出版、2009年 ISBN 9784320019072

関連項目

外部リンク




英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「半長軸」の関連用語

半長軸のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



半長軸のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの楕円 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS