再生サイクルの構成
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2019/02/16 05:20 UTC 版)
図 1 のように、タービン膨張途中の蒸気 H1を一部取り出して(抽気)、給水加熱器 E1 に導いてボイラへ送る水(給水)に混合し、給水を加熱するのに使用する。 タービン流入蒸気量 1 kg に対する抽気量を m1 kg とすると、タービンの前半(高圧)部分には 1 kg の蒸気が流れ、後半(低圧)部分には (1 - m1) kg が流れる。タービン後半部分を出た湿り蒸気は、復水器で凝縮されて飽和水となり、ポンプにより給水加熱器へ送られて抽気と混合される。 抽気と給水を混合するためには、両者の圧力を等しくしなければならないので、給水ポンプを CPと P の 2 つに分けて、その間に給水加熱器 E1 を配置する。 給水加熱器に入る給水は復水ポンプ CP で加圧されているので、サブクール水(圧縮水)となっている。後述のようにポンプ仕事を無視できるので、このサブクール水の比エンタルピーはほぼ hC のままと考えてよい。給水加熱器 E1 では比エンタルピー hC のサブクール水 (1 - m1) kg と、H1 の抽気 m1 kg を混合して、h1 の飽和水 1 kg を作る。 こうなるように、抽気量 m1 を調整する。飽和水 h1 を給水ポンプ P でボイラ圧まで加圧してサブクール水としてボイラへ送る。 抽気により給水加熱器で加熱した分だけ、ボイラでの加熱量が少なくてすむ。同時に、タービンで取り出す仕事量も抽気した分だけ減少するが、ボイラから低温での加熱を削除した効果の方が大きい。これは、ボイラで熱を加える水の温度範囲がより高温側にシフトしたことに対応しており、熱力学第二法則(カルノーの定理)の当然の結果である。このことは、以下のように具体例で計算して評価するか、または T-s 線図上で考えれば、より分かりやすい。
※この「再生サイクルの構成」の解説は、「再生サイクル」の解説の一部です。
「再生サイクルの構成」を含む「再生サイクル」の記事については、「再生サイクル」の概要を参照ください。
- 再生サイクルの構成のページへのリンク