フェルマーの二平方和の定理とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > ウィキペディア小見出し辞書 > フェルマーの二平方和の定理の意味・解説 

二個の平方数の和

(フェルマーの二平方和の定理 から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/12/30 09:21 UTC 版)

二個の平方数の和(にこのへいほうすうのわ)は「平方数」、「多角数定理」などの補遺に当たる。ここに示す事実は古くから知られている[1]ものであるが呼びかたが定まっておらず、フェルマーの4n+1定理[2]、フェルマーの二平方定理、あるいは単にフェルマーの定理(フェルマーの最終定理とは異なる)などと呼ばれる。


  1. ^ Wolfram MathWorld: Sum of Squares Function
  2. ^ Weisstein
  3. ^ Zagier, Don (February 1990). "A One-Sentence Proof That Every Prime 𝑝≡1 ⁢(mod⁡4) Is a Sum of Two Squares" (pdf). The American Mathematical Monthly (英語). 97 (2): 144. doi:10.2307/2323918. JSTOR 2323918. 2023年12月30日閲覧 Preprint Archived 2012年2月5日, at the Wayback Machine.
  4. ^ Wolfram Mathworld: Euler's 6n+1 Theorem
  5. ^ たとえば Landau (1909), p. 641-- を参照


「二個の平方数の和」の続きの解説一覧

フェルマーの二平方和の定理

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/04/16 01:27 UTC 版)

平方剰余の相互法則」の記事における「フェルマーの二平方和の定理」の解説

詳細は「二個の平方数の和」を参照 4k + 1 型の素数二個の平方数の和で表すことができる。また逆にある奇素数二つの平方数の和で表すことができるならば、4k + 1 型の素数である。そして、二つ平方数順序別にすればこの分解は一意的である。 5 = 1 2 + 2 2 , 113 = 7 2 + 8 2 , 277 = 9 2 + 14 2 , 421 = 14 2 + 15 2 , 13 = 2 2 + 3 2 , 137 = 4 2 + 11 2 , 281 = 5 2 + 16 2 , 433 = 12 2 + 17 2 , 17 = 1 2 + 4 2 , 149 = 7 2 + 10 2 , 293 = 2 2 + 17 2 , 449 = 7 2 + 20 2 , 29 = 2 2 + 5 2 , 157 = 6 2 + 11 2 , 313 = 12 2 + 13 2 , 457 = 4 2 + 21 2 , 37 = 1 2 + 6 2 , 173 = 2 2 + 13 2 , 317 = 11 2 + 14 2 , 461 = 10 2 + 19 2 , 41 = 4 2 + 5 2 , 181 = 9 2 + 10 2 , 337 = 9 2 + 16 2 , 509 = 5 2 + 22 2 , 53 = 2 2 + 7 2 , 193 = 7 2 + 12 2 , 349 = 5 2 + 18 2 , 521 = 11 2 + 20 2 , 61 = 5 2 + 6 2 , 197 = 1 2 + 14 2 , 353 = 8 2 + 17 2 , 541 = 10 2 + 21 2 , 73 = 3 2 + 8 2 , 229 = 2 2 + 15 2 , 373 = 7 2 + 18 2 , 557 = 14 2 + 19 2 , 89 = 5 2 + 8 2 , 233 = 8 2 + 13 2 , 389 = 10 2 + 17 2 , 569 = 13 2 + 20 2 , 97 = 4 2 + 9 2 , 241 = 4 2 + 15 2 , 397 = 6 2 + 19 2 , 577 = 1 2 + 24 2 , 101 = 1 2 + 10 2 , 257 = 1 2 + 16 2 , 401 = 1 2 + 20 2 , 593 = 8 2 + 23 2 , 109 = 3 2 + 10 2 , 269 = 10 2 + 13 2 , 409 = 3 2 + 20 2 , 601 = 5 2 + 24 2 . {\displaystyle {\begin{aligned}5&=1^{2}+2^{2},&113&=7^{2}+8^{2},&277&=9^{2}+14^{2},&421&=14^{2}+15^{2},\\13&=2^{2}+3^{2},&137&=4^{2}+11^{2},&281&=5^{2}+16^{2},&433&=12^{2}+17^{2},\\17&=1^{2}+4^{2},&149&=7^{2}+10^{2},&293&=2^{2}+17^{2},&449&=7^{2}+20^{2},\\29&=2^{2}+5^{2},&157&=6^{2}+11^{2},&313&=12^{2}+13^{2},&457&=4^{2}+21^{2},\\37&=1^{2}+6^{2},&173&=2^{2}+13^{2},&317&=11^{2}+14^{2},&461&=10^{2}+19^{2},\\41&=4^{2}+5^{2},&181&=9^{2}+10^{2},&337&=9^{2}+16^{2},&509&=5^{2}+22^{2},\\53&=2^{2}+7^{2},&193&=7^{2}+12^{2},&349&=5^{2}+18^{2},&521&=11^{2}+20^{2},\\61&=5^{2}+6^{2},&197&=1^{2}+14^{2},&353&=8^{2}+17^{2},&541&=10^{2}+21^{2},\\73&=3^{2}+8^{2},&229&=2^{2}+15^{2},&373&=7^{2}+18^{2},&557&=14^{2}+19^{2},\\89&=5^{2}+8^{2},&233&=8^{2}+13^{2},&389&=10^{2}+17^{2},&569&=13^{2}+20^{2},\\97&=4^{2}+9^{2},&241&=4^{2}+15^{2},&397&=6^{2}+19^{2},&577&=1^{2}+24^{2},\\101&=1^{2}+10^{2},&257&=1^{2}+16^{2},&401&=1^{2}+20^{2},&593&=8^{2}+23^{2},\\109&=3^{2}+10^{2},&269&=10^{2}+13^{2},&409&=3^{2}+20^{2},&601&=5^{2}+24^{2}.\end{aligned}}} 証明は、ある素数 p に対して A2 + B2 = rp表せたならば r より真に小さい r′ ≥ 1 を選んで A′2 + B′2 = r′p とできるアルゴリズム存在を示すことで行うことができる。 4k + 1 型の素数は第1補充法則より、A2 + 12 = rp と表すことができるため、このアルゴリズム適用すればいつかは r を 1 にすることができる。

※この「フェルマーの二平方和の定理」の解説は、「平方剰余の相互法則」の解説の一部です。
「フェルマーの二平方和の定理」を含む「平方剰余の相互法則」の記事については、「平方剰余の相互法則」の概要を参照ください。

ウィキペディア小見出し辞書の「フェルマーの二平方和の定理」の項目はプログラムで機械的に意味や本文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「フェルマーの二平方和の定理」の関連用語

フェルマーの二平方和の定理のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



フェルマーの二平方和の定理のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの二個の平方数の和 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
ウィキペディアウィキペディア
Text is available under GNU Free Documentation License (GFDL).
Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、Wikipediaの平方剰余の相互法則 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。

©2024 GRAS Group, Inc.RSS