グロタンディーク・トポス
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/09/15 14:55 UTC 版)
「トポス (数学)」の記事における「グロタンディーク・トポス」の解説
C を小さな圏とする。C の各対象 X から HomC(-, X) の部分関手の族 J(X) への対応 J で以下の公理を満たすものはC上のグロタンディーク位相といわれ、対 (C, J) は景(site)とよばれる。 HomC(-, X) ∈ J(X) S ∈ J(X) のとき任意の射 f: Y → X について S の f による引き戻し f*S = { g: Z → Y | fg ∈ S(Z) } は J(Y) に入る S ∈ J(X)、R ⊂ HomC(-, X)で任意の (f: Y → X) ∈ S(Y) について f*R ∈ J(Y) ならば R は J(X) に入る たとえば、C の任意の対象 X について J0(X) = { HomC(-, X) } とおけば、J0は上の条件を満たす。このJ0はC上の自明なグロタンディーク位相とよばれる。 (C, J) を景とするとき、Cから Sets への反変関手のうちで J についての「張り合わせ条件」を満たすものは (C, J) 上の層と呼ばれ、それらのなす圏 Sh(C, J) ( C ~ {\displaystyle {\tilde {C}}} とも書かれる)はトポスになる。このようにして得られるトポスはグロタンディーク・トポスと呼ばれる。Sets への反変関手全体を考えるかわりに適当な宇宙 U への反変関手全体を考えることにすると、得られた「トポス」自体を再び景と見立てることが可能になる。このときのグロタンディーク位相は射の系の全射性によって定められる。 グロタンディーク・トポスは余完備(cocomplete)で小さな生成系を持つトポスとして特徴づけられる。ここからグロタンディーク・トポスにおけるアーベル群的な対象のなすアーベル圏は十分に単射的対象を持つことがしたがう。したがってグロタンディークトポスのアーベル群的な対象の圏についてその導来圏を考えたり、トポスの射の直像部分の右導来関手を考えたりすることができる。 とくにC を小さな圏とするとき、その上の自明なグロタンディーク位相からはC上の反変関手(C上の前層とよばれる)全体の圏 Psh(C) ( C ^ {\displaystyle {\hat {C}}} とも書かれる)が得られる。またJ がC 上のグロタンディーク位相のとき、「埋め込み/忘却」関手 Sh(C, J) → Psh(C) と「層化」関手 Psh(C) → Sh(C, J) の対は Sh(C, J) から Psh(C) へのトポスの射になる。
※この「グロタンディーク・トポス」の解説は、「トポス (数学)」の解説の一部です。
「グロタンディーク・トポス」を含む「トポス (数学)」の記事については、「トポス (数学)」の概要を参照ください。
- グロタンディーク・トポスのページへのリンク