「無限」
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/09/29 15:57 UTC 版)
ガリレオのパラドックス ほとんどの自然数は平方数ではないにもかかわらず、自然数 n を平方数 n2に対応させると、自然数全体と平方数全体とは1対1対応する。 ヒルベルトの無限ホテルのパラドックス 無限に部屋のあるホテルは、満室であってもそれぞれ n 番目の客室の客に n + m 番目の客室に移ってもらうことにより、さらに m 人の客を泊めることができる。無限の客がやってきても、元いた客に 2n 番目の客室に移ってもらうことにより入室可能である。 以上二つは(他にも数学や物理関係には同様のものが多いが)、無限というものが一見直感に反する、ということを述べているだけのことで、論理でいうところの矛盾ではない。濃度の記事などを参照。 スコーレムのパラドックス 下降型レーヴェンハイム-スコーレムの定理によると、ZF 集合論も可算モデルを持つことになるが、ZF 集合論の中には非可算集合が存在する。このことは一見不合理のように見えるので、スコーレムのパラドックスと呼ばれる。これは、形式体系内での集合概念と、メタ理論内の集合概念の違いをはっきり認識していないと不可解に見えるというに過ぎない。
※この「「無限」」の解説は、「パラドックス」の解説の一部です。
「「無限」」を含む「パラドックス」の記事については、「パラドックス」の概要を参照ください。
- 「無限」のページへのリンク