解析接続 例

解析接続

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/11/19 23:20 UTC 版)

等比級数とそれの解析接続を複素平面上で可視化したもの。左図の水色点はsを表しており、水色の円形領域は級数
k=0
sk
の収束半径を示している。
右図の連結した黄線は、
k=0
sk
の有限和n
k=0
sk
において、n=0からn=20までの値をプロットし、それを繋いだものである。緑点は1/1−sを表している。 sが収束半径内にあるとき、有限和の値は1/(1-s)に吸い込まれる螺旋状に変化することがわかる。sが収束半径外にあるとき、有限和の値は中心を1/(1-s)として外側に広がる螺旋状に変化することがわかる。
※ 以下の説明においてi虚数単位とする。

複素数 z を変数とし、無限級数によって定義される関数

を考える。この関数は、収束半径が 1 であり

収束する。すなわち |z| < 1 の時に g(z) に収束する。

しかしながら、 g(z) は z≠1 において定義され、 f0(z) と定義域が異なることが分かる。

※ 以下では見通しをよくするために g(z) と級数を比べながら説明するが、普通は解析接続を用いるときに g(z) のように定義域の広い関数はわかっていない。

ここで、 g(z) を f0(z) の収束円内の点 z = − 1/2 を中心にテイラー展開してみれば

であり、その収束半径は (3/2) であるので |z +(1/2) | < (3/2) において定義できることになる。つまり、 f(z) から f−(1/2)(z) に取り替えることによって定義域を拡げられることがわかる。さらに z = − 1, − 2, … でのテイラー展開を考えることにより定義域を拡げていくことができる。この操作により定義域を拡げていけば 実部 Re(z) が 1 より小さい任意の z に関して、適当な無限級数をとればその値を定義できることが分かる。

さらに z = (1 + i)/2 における g(z) のテイラー展開

を考えると収束半径は 1/√2 である。 O(a,r) によって、 a を中心とする半径 r開円板を表すことにすると f0O(0,1) において定義され、 f(1+i)/2O((1+i)/2,1/√2) において定義されていることになる。この 2つの開円板の共通部分では f0(z) = f(1+i)/2(z) であり

という関数を定義できる。この h(z) は、共通部分では f0(z) = f(1+i)/2(z) の値を取り、それ以外では、定義されている方の関数の値を取る関数である。これは Re(z) = 1 という線を越えて、 f0 の定義域を拡げることができることを意味している。このように級数で表現でき、定義域が異なるが、共通部分では同じ値を取る関数を用いて定義域を拡げていく手法、あるいは、 f0(z)に対して 上で与えたような h(z) のように定義域を拡げた関数のことを解析接続という。


  1. ^ 神保道夫. (2003). 複素関数入門. 岩波書店.
  2. ^ Ablowitz, M. J., Fokas, A. S. (2003). Complex variables: introduction and applications. Cambridge University Press.
  3. ^ 複素解析 / ラース・ヴァレリアン・アールフォルス著 ; 笠原乾吉訳.






解析接続と同じ種類の言葉


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「解析接続」の関連用語

解析接続のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



解析接続のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの解析接続 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS