ハードディスクドライブ 問題点

ハードディスクドライブ

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/05/11 12:05 UTC 版)

問題点

品質

ハードディスクドライブは、その製造過程において高度なクリーンルームや良質の磁性体を必要とし、ドライブの品質は潤滑剤、制御基板等の品質に左右される。これらの事柄が要因となってドライブのロット不良を起こす場合がある。

高密度記録を実現するために、ディスク回転時のプラッタの保護膜表面と磁気ヘッド端部との距離、ヘッド浮上量は2009年6月現在、2 nm程であり、タバコの煙の粒子より狭いため、ハードディスクドライブ内部は半導体製造工場のクリーンルーム並みの無塵度が求められる。

製品寿命

ハードディスクドライブの寿命はS.M.A.R.T.で計られ、MTBF(平均故障間隔)やMTTR(平均修復時間)として推測される。一般に温度が高いほど寿命は短くなると思われているが、Googleが自社のサーバ群の故障発生率の統計から発表したデータ[18]では、極端な高温ではない限り温度と故障率との関連性は認められていない(ただし、これは室温の管理されたサーバルームでの話であり、ノートPCなどでは容易に高温に達する場合もある)。むしろ、低温による故障率との関連性が指摘されている。前述の通り高温による故障発生率は以前より指摘されていた経緯があるが、実際には38度を下回る温度はむしろHDDの故障率を上げる傾向にある。例えば、一般にHDD温度50度は好ましくないと言われるが、HDD温度が30度の場合同程度の故障発生率となっている[19]

また、個人向け[20]と企業のサーバ用途向け[21]では設計時における耐久性に格差が存在し、個人向けは一日8時間使用で3年から5年・サーバ用途向けは24時間稼動で3年から5年を目安にHDD製造メーカーでは保証期間が設定されているが、実際の製品寿命を保証する物ではない。

ハードディスクドライブの寿命は前述したように正確な予測が困難であるため、定期的なバックアップの重要性は昔から絶えず言われ続けている。一般ユーザーレベルでのバックアップ先としては、CD-RDVD-RBD-Rなどの光メディアへの保存か、場合によっては容量などの面からバックアップ専用外付けHDDへの保存が一般化している。また、サーバ用途で一般的に使われているHDDを使ったRAID構成は、この問題に対する一つの回答であり、個人向けや家庭向けのRAID構成HDDが発売されている。ノートPCなどRAIDが困難な場合でも、ソフトウェアによるミラーリングも可能である。

同一設計のドライブの製造期間は短い物で3か月、長い物で1年程度である。日本における家電製品等では補修用性能部品の保持期間を通商産業省の行政指導あるいは自主基準により定めているが、コンピュータを含む通信機器メーカーはその対象ではなかった。このため、パソコンメーカーなどでは修理部品の確保が難しい場合が多く、修理作業自体にかかる手間やドライブの価格低下が激しい事情も合わせて、故障した製品の代替の製品と交換することで対応する例も珍しくない。故障したドライブに記録されたデータの取り出しを行う専門業者も存在するが、かなり割高の代金となることが多い。

ハードディスクドライブの寿命を延ばす方法は色々いわれている。例えばディスクが回転を続けていると発熱し劣化を促進するため、冷却などによって温度を下げることが好ましいとされているが、方式によっては取った手段が逆効果になる場合もある。また、3.5インチタイプに多い電源断時にヘッドがディスク上で停止する製品は、起動と停止を繰り返すとヘッドの磨耗や微粒子による悪影響が生じやすく、PCの起動中はHDDの電源を切らない設定がよいとされるが、デスクトップPCなど放熱に余裕のある装置に装着されている場合が多い上、電源断時にヘッドがディスク外の所定の位置で停止する(ヘッドの待避機能)製品がほとんどであるため[22]、起動と停止を繰り返してもさほど悪影響はないともいわれる[要出典]。一説によれば、停止時にヘッドがディスクと接触しないように設計されたHDD(ランプロード方式)でもヘッダが退避場所からプラッタに移動するロード、ヘッダが退避場所に戻るアンロード時にも微妙にプラッタと摩擦しているとされ、これによって発生する微粒子がハードディスク内を汚染し、故障リスクを上昇させるという。最外周のロードアンロード領域にデータ領域は存在しないが、仮にヘッドのロードアンロード時に摩擦が発生するのだとしたら、頻繁に電源をつけたり消したりすることは間接的にHDDの寿命を縮めていることになる。通常、微妙に摩擦したとしてもプラッタ上に塗布処理されたライナーによってプラッタは保護されるが、これが経年劣化したり、意図しない電源断時に想定外に摩擦して著しく寿命を縮めるほか、不良セクタを誘発させる原因にもなりうるであろう。近年でも停止時にヘッドがプラッタの内側に退避するCSS方式を採用したHDDが見られるが、このようなHDDの場合、電源が供給されなくなるとプラッタはこれ以上加速はされないが、慣性の法則により完全に停止するまで回り続ける。この間、プラッタとヘッドは摩擦され続けることになり、HDDの寿命を縮める要因になる。これらを抑えるために、メーカーはCSS領域に特殊な加工を施している。

衝撃

ヘッドの大きさをジャンボジェットにたとえると、僅か1mmのところを飛行するというように例えられるように、ハードディスクドライブは転倒、落下等の強い衝撃を受けた場合、ヘッドが円盤面に衝突(これを一般的にヘッドクラッシュと呼称する)して円盤に傷が付いたり、モーター内のベアリングが変形したりしてデータの読み書きが不能となる場合がある。特に動作中の落下で故障しやすいため、携帯用途で使用されるハードディスクドライブを内蔵した製品を扱う場合は強い衝撃を与えないように注意を払う必要がある。また、希に落下したあとでも正常に動作する場合、そこでできた傷がごみとなり、それがハードディスクドライブ全体に行き渡って破損する場合もある。特に1980年代ごろまでの開発初期のハードドライブは脆弱であり、動作中の移動は禁忌であり、使用中に地震が起きただけでも破損することもあった。耐衝撃性は年々改善され、2000年代までには、揺れる電車や自動車内でも問題なく作動するようになっている(ただし破損する危険性がないわけではなく、2010年代に入ってからは、このような用途向けにはSSDが使われるようになっている)。

輸送時などの衝撃による破損、あるいはヘッド面とプラッタ面との「張り付き」を防ぐため、ヘッドをディスクの安全な領域へリトラクト(retract、収納退避)させることが重要になる。例えばNEC PC-9800シリーズなどの場合、電源を切る前にSTOPキーを押して手動リトラクトする習慣を身につけることが、ユーザーにとって一種の必修事項となっていた[22]。その後、電源を切った際にハードディスクドライブが自動的にリトラクト動作をするオートリトラクト機能を備えることが一般的となった。更にこれを発展させ、加速度センサーを内蔵し、自由落下を検出すると電源を切らずともオートリトラクトして破損を予防する機能が一般的となっている。PowerBookなど一部のノートパソコンではディスク外部に加速度センサーを設け、同様の機能を実現した。ただし常に揺れる電車内などでは、頻繁にリトラクトが行われてしまい、書き込み速度が異常に低下するという問題もある。これらの発展によりハードディスクドライブの用途は大きく広がり、2006年には東芝製の携帯電話「W41T」が0.85インチのハードディスクドライブを搭載した。しかしフラッシュメモリに比較すると、「消費電力が多い」、「小容量ではコスト高になる(2000年代後半以降のフラッシュメモリの価格下落が著しく、1インチ以下のクラスではコストが逆転した)」、「厚みがかさばる」という難点もあり、この機種以降、ハードディスクドライブを搭載した携帯電話は製品化されていない。

制御基板

ハードディスク本体内部もさることながら、その制御基板の部品が焼損することなどで故障する例も多い。同一製品でも製造ロットごとに基板の部品構成が異なる例が多く、その場合はその基板を移植しても動作しないことが多いことや、メーカー側も基板交換の対応は行っていないことから、個人レベルでの対応は困難とされる。しかし、まれに同時期に同国で、同モデルとして製造されたHDDの基板に取り付けられた、HDDコントローラの制御プログラムがインプットされたEEPROMを交換することによって動作させる一例もある。

データ漏洩

コンピュータの処分時に、ハードディスクドライブに適切な消去作業を行なわないと中身のデータを部外者に盗みとられてしまう危険がある。適切な消去作業とは内部情報を完全に物理的に消去することである。

論理的消去

操作者がファイルの削除操作を行ってもOSは通常はインデックス部に削除情報を書き込むだけで、記録情報の本体であるデータ部はディスク内にそのまま残され、「ゴミ箱」を空にしても一般的なファイル復元ソフトによって復元される可能性がある[注釈 17]。また、通常のフォーマット(論理フォーマット)もデータ部をクリアすることはしないため、復元される可能性がある。

上書き

残存データを完全に消去するには、ハードディスク全体を他のデータで上書きする必要がある。上書き回数に関しアメリカ国防総省は2001年まで3回の上書き処理を規定していたが、ハードディスクの高容量化に伴い2006年以降は1回と規定している。

データ消去ソフト

一般的な使用においては、売却・廃棄をする際はデータ消去ソフト等で完全消去するのが望ましい。ハードディスクドライブ自体が故障してデータ消去できない場合でも、故障箇所によっては修理によってデータ漏洩する危険がある。また、火災電子レンジなどで外見上破壊されていても、特殊な復旧機材を所有する業者に依頼すれば高額ながらもデータ復旧は可能である。過去にコロンビア号空中分解事故においてスペースシャトルコロンビア号に搭載されていたハードディスクのデータを、NASAがアメリカのデータ復旧業者 (Kroll Ontrack Inc.) に依頼し、中身のデータをほぼ復旧したという事例がある[23]

物理的破壊

中途半端に物理的破壊されたハードディスクからデータを復活させることは可能な場合もある[24]。たとえば、ドリルで穴を開けてプラッタを破壊したとしても、プラッタの残骸を最先端の残留磁気探索装置を用いて解析することにより、わずかな部分でも1ビットずつ手作業でデータを復活させていくことも出来る。ハードディスク・メーカーのシーゲイト・テクノロジーはそのような手法を保有していると公表している。

数1000ガウス以上の磁気をハードディスクに照射し、媒体ごと消磁する手法もあるが比較的高価である[25]

また、磁気を利用している点を生かして強力な磁場を発生させて、読み取り不可能な状態まで破壊する専用器具も出てきている。

暗号化

データを暗号化しておけば、たとえ物理的にデータを読み出されても暗号が解けない限りは情報の機密は守られ、紛失や盗難時にも有効である。


注釈

  1. ^ fixed disk
  2. ^ HDDが21世紀現在、固定ディスクと呼ばれることがあるのは、概ね取り外しに手間がかかりほとんど固定されて使用されるためや、PC環境でのCD/DVD/BD-DVDとの対比が原因だと考えられる。HDD単体や外付けHDD装置では、SATAUSBによって容易に脱着できるようになると、同じHDDでも「固定ディスク」とは呼ばれなくなる。
  3. ^ : Winchester disk
  4. ^ 3.5インチ型ではHGSTWDが採用。2.5型ではすべてのHDDが採用している。
  5. ^ その多くは半導体プロセス技術の進歩の恩恵を受けている。その応用例の一つとして、IBMが発明したPixie Dust技術(反強磁性結合メディア、AFCメディア)がある。これはディスク表面の磁性体の上にルテニウム原子を3個コーティングして、さらに磁性体でコーティングしてサンドイッチにした物である。この技術は2001年、1平方インチあたりの記録密度を100Gbitに高める可能性を示し、同技術の改良版によって2002年100Gbitに達する製品を実際に発売した。その他に、2002年に富士通がディスク表面に微細な凸凹(テクスチャ)を施し磁性体の表面積を大きくし、記録密度を高める技術を発表した。東北大学岩崎俊一博士(現 東北工業大学学長)が1977年に発明した垂直磁気記録方式は、理論上では水平磁気記録方式よりも安定して高密度化できるが、いくつかの技術的困難があった。2005年東芝が実用化し、今日の超高密度記録を実現している。さらに東芝では、この垂直磁気記録方式のプラッタに溝を加えることにより磁気の相互干渉を抑えてさらなる記録密度向上を狙ったディスクリート・トラック・レコーディング (DTR) 技術、パターンド・メディア・レコーディング技術が開発された。現在実用化に向けて研究されている。
  6. ^ 関西大学システム理工学部では保護膜上の潤滑膜層の形成に「電圧印加ディップ法」を使い、現行の1.6 - 1.8nmから1.1nmへと薄膜化することで磁気ヘッドの浮上量を2nmから1.4nmへと小さくすることで面記録密度を現行品 (400GB/inch2) の2倍以上の1TB/inch2にまで向上させるとしている。(Nikkei Electronics 2009.6.15 p14 - 15)
  7. ^ : fluid dynamic bearing
  8. ^ : magneto resistive head
  9. ^ : giant magneto resistive head
  10. ^ : tunnel magneto resistive head
  11. ^ 日立製作所の技術開発により、クーロンブロッケード異方性磁気抵抗効果が発表された。これは1平方インチ当たりの記録密度を現在[いつ?]の5倍、1Tbitに引き上げるものとされる
  12. ^ : longitudinal magnetic recording
  13. ^ : perpendicular magnetic recording
  14. ^ : shingled magnetic recording
  15. ^ : primary defect list
  16. ^ : grown defect list
  17. ^ 論理的消去の直後であればファイル復元ソフトによってほとんど100%が復元されうる。

出典

  1. ^ 1985年、「アルファベット順 F」、『情報処理用語32000』、株式会社インタープレス p. 255
  2. ^ 必ず壊れる記録メディアに万全の備えを!:徹底研究 メディアの寿命”. 日経BP 日経PC21 仙石 誠 (2010年5月25日). 2011年9月30日閲覧。
  3. ^ ハードディスクは消耗品、万が一の時のために覚えておきたいオープンなデータ復旧会社「日本データテクノロジー」”. Gigazine (2011年5月9日). 2011年9月30日閲覧。 - インタビュー記事後半、「やはりハードディスクは消耗品であると考えていただいた方が良いです。」
  4. ^ ハードディスクは「消耗品!」/デジタルデータを守りたい。ミラーリングやRAID 5対応HDDが好調!”. HDD NAVI・株式会社インターコム (2008年11月26日). 2011年9月30日閲覧。
  5. ^ データ保護ノススメ2 ハードディスク (HDD) のトラブル対策”. データレスキューセンター・株式会社アラジン. 2011年9月30日閲覧。 - 「ハードディスクが消耗品である以上、故障を完全に防止することはできません。」
  6. ^ HD革命-DISK Mirror Ver.3”. 株式会社アーク情報システム. 2011年9月30日閲覧。 - 「ハードディスクは消耗品ですので寿命があります。」
  7. ^ IBM Archives: IBM 1301 disk storage unit
  8. ^ JEITA. “2007年情報端末関連機器の世界・日本市場規模および需要予測”. 2008年4月30日時点のオリジナルよりアーカイブ。2008年10月23日閲覧。
  9. ^ Hisa Ando『コンピュータアーキテクチャ技術入門 : 高速化の追求×消費電力の壁』技術評論社、2014年6月5日、307頁。ISBN 978-4-7741-6426-7 
  10. ^ 窓の杜 - 自分のマシンのハードウェア情報をのぞいてみよう!”. forest.watch.impress.co.jp. 2018年10月22日閲覧。
  11. ^ Hisa Ando『コンピュータアーキテクチャ技術入門 : 高速化の追求×消費電力の壁』技術評論社、2014年6月5日、293頁。ISBN 978-4-7741-6426-7 
  12. ^ a b c Windows XPでは再設定が必要な1TB HDDが発売”. インプレス. 2023年6月24日閲覧。
  13. ^ a b 【平澤寿康の周辺機器レビュー】Western Digital「WD30EZRS」 ~世界初、容量3TBに到達した3.5インチHDD - PC Watch”. インプレス. 2023年6月24日閲覧。
  14. ^ 【元麻布春男の週刊PCホットライン】大容量HDDがOSの64bit化を招く - PC Watch”. インプレス. 2023年6月24日閲覧。
  15. ^ モバイル機器に搭載可能な0.85型ハードディスクドライブの開発について - 東芝プレスリリース(2004年1月8日発表)2018年5月11日閲覧
  16. ^ DSP 5200S hard drive”. 2020年10月25日閲覧。
  17. ^ Digital Storage Products Model DSP5200 Model DSP5350 Installation Guide EK-DS002-IG. C01”. Digital Equipment Corporation. 2022年3月1日閲覧。
  18. ^ Failure Trends in a Large Disk Drive Population (PDF) (2008年4月6日時点のアーカイブ
  19. ^ HDD Reliability for Cloud Data Centers 2013 05 02 Bernhard Hiller WD.pdf Page.22”. 2014年11月18日閲覧。
  20. ^ シーゲート製BarraCudaとBarraCuda Proなどやウェスタンデジタル製WD Blue/WD Blackなど、HGST製Deskstarが該当。
  21. ^ シーゲート製IronWolfとIronWolf Proなど、ウエスタンデジタル製WD Red/WD Red Pro/WD Goldなど、HGST製Ultrastarが該当。
  22. ^ a b オートリトラクト ‐ 通信用語の基礎知識”. www.wdic.org. 2018年10月22日閲覧。
  23. ^ Scientific American記事(英文)[1]
  24. ^ 参考: データ復旧 成功事例”. 大塚商会. 2015年1月17日閲覧。
  25. ^ ハードディスククラッシャー&テープイレーサー[2]
  26. ^ storagevirtualization (2009年9月18日). “A brief History of Areal Density (Barry Whyte - An exchange and discussion of Storage Virtualization)” (英語). www.ibm.com. 2018年10月22日閲覧。
  27. ^ a b 日本HDD協会2013年1月セミナーレポート
  28. ^ Financial Press Releases - seagate社(英語、2011年4月19日発表)
  29. ^ WESTERN DIGITAL TO ACQUIRE HITACHI GLOBAL STORAGE TECHNOLOGIES - Western Digital社(英語、2011年3月7日発表)
  30. ^ Western Digital Unveils New Addition: 8TB Ultrastar® DC HC320 - Western Digital Corporate Blog Western Digital 2018年3月15日





英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「ハードディスクドライブ」の関連用語

ハードディスクドライブのお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



ハードディスクドライブのページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのハードディスクドライブ (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS