ハードディスクドライブ
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/05/11 12:05 UTC 版)
パーティション
ハードディスクドライブは1台で大容量を利用出来るため、利用方法に合わせて内部を区画(パーティション)に分割出来る。個々の区画を別々のOSで利用することも出来る。
フォーマット
かつてハードディスクドライブの総容量が10 - 100MB台であった1980年代末頃までは、ハードディスクドライブはフォーマットして使用するデバイスであった。このフォーマットは、物理フォーマットと論理フォーマットにわけられ、前者はサーボ情報からセクタ情報まで全てを再構築するものであり、後者は前述のパーティションを作成する際に不良セクタ情報を集めて、それらを予備領域で代替し、ファイルシステムを構築するものである。
1980年代末頃からヘッドの位置決め追従方式(フォロイングサーボ)が導入され、間もなく総容量1GB台に突入すると、通常利用環境での物理フォーマット(ローレベルフォーマット)は困難になり始めた。今日のハードディスクドライブは物理フォーマットを行う為の条件が厳しく、温度・湿度・振動・電源・またその他いくつかの条件を厳密に管理された、工場内の特殊環境下でサーボ情報を書き込まないと、設計された容量でフォーマットする事はおろか、正常に動作させる事すら難しい。外乱を受けると、その瞬間に扱っていたセクタないしトラックが利用不可になる。このため、今日のハードディスクドライブは物理フォーマットコマンドを廃止したり無視する傾向にある。
今日のハードディスクドライブは内部に不良セクタの欠陥リストを保持しており、これには工場出荷時点での欠陥リスト(Pリスト[注釈 15])と、ユーザー利用開始以降に生じた欠陥リスト(Gリスト[注釈 16])がある。おおよそSCSIインターフェースが主流であった時代までのハードディスクドライブは、欠陥セクタリストがアクセス可能であった[10]。あるいは、もっと古い時代のドライブの欠陥セクタ処理はOSの仕事であった。今日では欠陥セクタリストが見かけ上0である「ディフェクトフリー」ドライブとして発売されているが、物理的にそのようなハードディスクドライブを製造することは不可能で、内部に隠蔽されたPリストが一定数以下というような品質基準に基づき出荷されている。
欠陥のあるセクタはいずれの場合でもそのまま放置される訳ではない。ユーザーがアクセス不可能な予備領域に冗長として領域が確保されており、物理フォーマットの時点で問題のあるセクタ/トラックは予備領域内のセクタに自動的にアサインし直される。これにより欠陥セクタは自動的にスキップ(代替)される。また、データ記録にはリード・ソロモン符号等を使うことでエラー訂正を行い、ビットレベルの点欠陥は事実上無視できる。記録密度向上によってS/N比は低下する一方なのでエラー訂正技術は今日のハードディスクドライブにとって不可欠な技術である。
実際に欠陥セクタであるかどうかは書き込み時には検出できず、ベリファイを含む読み取り時にしか検出できない。通常のOSではハードディスクドライブの信頼性は十分なものと見なしており、またパフォーマンスの低下を招くため書き込み直後のベリファイ動作はデフォルトでオンになっていないのが通常である。物理フォーマット後あるいは書き込みの後に、前述のエラー訂正によっても回復不能なセクタのビット列変化が起きれば、それは欠陥セクタであり、読み取り動作時に直ちに検出される。該当セクタがOSによって使用中である場合、データの損失を招く。実際には、一定基準以上のエラー訂正が発生したセクタは、ドライブのファームウェアによって再書き込みされるか、あるいは事前に予備セクタに代替処理され、データ損失を防いでいる。
もし利用経過によって予備領域が枯渇し、あるいはOSによって使用中の欠陥セクタが発生した場合には、アクセスするとエラーが発生し、システムまたはデータの損失が生じる。元より、OSのファイルシステムによって欠陥クラスタを回避する機能は備わっており、論理フォーマットによってスーパービットマップなどで「蓋をする」処理が行われる。古い時代のハードディスクは前述の予備代替処理機能そのものを備えておらず、欠陥セクタを取り除いた領域がユーザー領域となるため、リストの長短がハードディスクドライブのクオリティであり、また使用中にこのリストがどれだけ増えるかが、管理者の頭痛の種であった。今日では一定基準以上のエラー訂正が発生したセクタやデータ損失前に事前に予備セクタに代替処理されたセクタの数をS.M.A.R.Tで検出が可能であり、その様なドライブは要注意ドライブとして事前に新しい製品に交換される事が行われている。
当初、ハードディスクドライブのセクタサイズは1セクタあたり512バイトであったが、2023年現在ではセクタサイズが4,096バイト(これまでの8倍)となっているハードディスクドライブが出回っている [11] 。4096バイトのセクタを採用したハードディスクドライブは2009年終わりごろから「Advanced Format Technology」(AFT)として登場した[12]。Windows Vista以降のオペレーティングシステムではそのまま利用可能であるが、Windows 2000/XPでは、512バイト以外のセクタサイズのHDDではパフォーマンスを引き出せないため、ベンダー提供のツールもしくはジャンパピンなどの再設定が必要である[12]。
AFTを採用したハードディスクドライブは、512nセクタを採用したハードディスクドライブと4Knセクタを採用したハードディスクドライブの中間的な位置といえる。AFTを採用したハードディスクドライブは4096バイトのセクタを持っているが、システム毎に自身の物理セクタサイズが512バイトのドライブだと誤魔化して情報の読み込み/書き込みを行う。4Knセクタを採用したハードディスクドライブを、4Knセクタのハードディスクドライブに対応しないOSのコンピュータに接続すると正常に動作しない。AFTドライブはこれらの中間的な位置付けとなる為、OSバージョンに関係なく使用することができる。
近年、ハードディスクドライブでは512バイトセクタから4096バイトセクタに移行する流れになっている。これはプラッタ当たりの容量、即ち記録密度を向上させるためである。ハードディスクのセクタはデータ領域に加えてセクタとセクタの間隔を保つためのセクタギャップとアドレス情報、エラー訂正符号が含まれたECC領域などで構成されている[13][14]。512バイトセクタでは4096バイトの保存に対してセクタギャップやECCなどで8個の領域が必要となるが、4096バイトセクタの場合はセクタごとに用意されるこれらの領域を1つにまとめることで容量効率を向上させている[12][13]。
512nや4Knに使われるnはネイティブを意味し、例えば4Knセクタの場合、完全なる4096バイトのセクタを持つドライブということになり、512バイトセクタとしての動作を一切保証しない。
論理フォーマットにおいて、MBR形式ではいわゆる容量の壁により2TB以上のドライブを正常に処理・認識できないため、GPT形式でフォーマットする必要がある。
容量の壁
ハードディスクの容量は常に拡大し続けている一方、古いファイルフォーマットやOS、BIOS等が対応できる容量には上限が存在し、これが通常「壁」と称される。主なものとしては、512MB、540MB、1GB、2GB(FAT16の最大値、パーティション毎)、4GB、8GB(BIOSの制限)、32GB(一部のAWARD BIOSの問題)、64GB(Windows 98のFdiskの問題。修正プログラムがある)、128GB、137GB(Big Driveに対応していない場合の制限値)、2TB(FAT32の最大値、パーティション毎 およびMBR方式のパーティションテーブルのセクタサイズ512バイトでの最大値)などがある。古いBIOSによる制限の場合には、BIOSをアップデートすることで解決する場合もあるが、メーカー製パソコンではアップデートができない場合が多い(どこのメーカーのBIOSを使っているのか公開しないことが多いため。普通はAward、American Megatrendsのいずれかなのだがそれさえも非公開の場合も多い)。
理論上は、128PB(Big Driveの最大値)などにも壁が存在し、今後も順調に容量の増加が続いた場合、その容量に到達した時点で問題になることになる。
ドライブによっては、ジャンパピンの設定等でHDDの認識可能容量を下げられるものもある。
注釈
- ^ fixed disk
- ^ HDDが21世紀現在、固定ディスクと呼ばれることがあるのは、概ね取り外しに手間がかかりほとんど固定されて使用されるためや、PC環境でのCD/DVD/BD-DVDとの対比が原因だと考えられる。HDD単体や外付けHDD装置では、SATAやUSBによって容易に脱着できるようになると、同じHDDでも「固定ディスク」とは呼ばれなくなる。
- ^ 英: Winchester disk
- ^ 3.5インチ型ではHGST、WDが採用。2.5型ではすべてのHDDが採用している。
- ^ その多くは半導体プロセス技術の進歩の恩恵を受けている。その応用例の一つとして、IBMが発明したPixie Dust技術(反強磁性結合メディア、AFCメディア)がある。これはディスク表面の磁性体の上にルテニウム原子を3個コーティングして、さらに磁性体でコーティングしてサンドイッチにした物である。この技術は2001年、1平方インチあたりの記録密度を100Gbitに高める可能性を示し、同技術の改良版によって2002年100Gbitに達する製品を実際に発売した。その他に、2002年に富士通がディスク表面に微細な凸凹(テクスチャ)を施し磁性体の表面積を大きくし、記録密度を高める技術を発表した。東北大学の岩崎俊一博士(現 東北工業大学学長)が1977年に発明した垂直磁気記録方式は、理論上では水平磁気記録方式よりも安定して高密度化できるが、いくつかの技術的困難があった。2005年に東芝が実用化し、今日の超高密度記録を実現している。さらに東芝では、この垂直磁気記録方式のプラッタに溝を加えることにより磁気の相互干渉を抑えてさらなる記録密度向上を狙ったディスクリート・トラック・レコーディング (DTR) 技術、パターンド・メディア・レコーディング技術が開発された。現在実用化に向けて研究されている。
- ^ 関西大学システム理工学部では保護膜上の潤滑膜層の形成に「電圧印加ディップ法」を使い、現行の1.6 - 1.8nmから1.1nmへと薄膜化することで磁気ヘッドの浮上量を2nmから1.4nmへと小さくすることで面記録密度を現行品 (400GB/inch2) の2倍以上の1TB/inch2にまで向上させるとしている。(Nikkei Electronics 2009.6.15 p14 - 15)
- ^ 英: fluid dynamic bearing
- ^ 英: magneto resistive head
- ^ 英: giant magneto resistive head
- ^ 英: tunnel magneto resistive head
- ^ 日立製作所の技術開発により、クーロンブロッケード異方性磁気抵抗効果が発表された。これは1平方インチ当たりの記録密度を現在[いつ?]の5倍、1Tbitに引き上げるものとされる
- ^ 英: longitudinal magnetic recording
- ^ 英: perpendicular magnetic recording
- ^ 英: shingled magnetic recording
- ^ 英: primary defect list
- ^ 英: grown defect list
- ^ 論理的消去の直後であればファイル復元ソフトによってほとんど100%が復元されうる。
出典
- ^ 1985年、「アルファベット順 F」、『情報処理用語32000』、株式会社インタープレス p. 255
- ^ “必ず壊れる記録メディアに万全の備えを!:徹底研究 メディアの寿命”. 日経BP 日経PC21 仙石 誠 (2010年5月25日). 2011年9月30日閲覧。
- ^ “ハードディスクは消耗品、万が一の時のために覚えておきたいオープンなデータ復旧会社「日本データテクノロジー」”. Gigazine (2011年5月9日). 2011年9月30日閲覧。 - インタビュー記事後半、「やはりハードディスクは消耗品であると考えていただいた方が良いです。」
- ^ “ハードディスクは「消耗品!」/デジタルデータを守りたい。ミラーリングやRAID 5対応HDDが好調!”. HDD NAVI・株式会社インターコム (2008年11月26日). 2011年9月30日閲覧。
- ^ “データ保護ノススメ2 ハードディスク (HDD) のトラブル対策”. データレスキューセンター・株式会社アラジン. 2011年9月30日閲覧。 - 「ハードディスクが消耗品である以上、故障を完全に防止することはできません。」
- ^ “HD革命-DISK Mirror Ver.3”. 株式会社アーク情報システム. 2011年9月30日閲覧。 - 「ハードディスクは消耗品ですので寿命があります。」
- ^ IBM Archives: IBM 1301 disk storage unit
- ^ JEITA. “2007年情報端末関連機器の世界・日本市場規模および需要予測”. 2008年4月30日時点のオリジナルよりアーカイブ。2008年10月23日閲覧。
- ^ Hisa Ando『コンピュータアーキテクチャ技術入門 : 高速化の追求×消費電力の壁』技術評論社、2014年6月5日、307頁。ISBN 978-4-7741-6426-7。
- ^ “窓の杜 - 自分のマシンのハードウェア情報をのぞいてみよう!”. forest.watch.impress.co.jp. 2018年10月22日閲覧。
- ^ Hisa Ando『コンピュータアーキテクチャ技術入門 : 高速化の追求×消費電力の壁』技術評論社、2014年6月5日、293頁。ISBN 978-4-7741-6426-7。
- ^ a b c “Windows XPでは再設定が必要な1TB HDDが発売”. インプレス. 2023年6月24日閲覧。
- ^ a b “【平澤寿康の周辺機器レビュー】Western Digital「WD30EZRS」 ~世界初、容量3TBに到達した3.5インチHDD - PC Watch”. インプレス. 2023年6月24日閲覧。
- ^ “【元麻布春男の週刊PCホットライン】大容量HDDがOSの64bit化を招く - PC Watch”. インプレス. 2023年6月24日閲覧。
- ^ モバイル機器に搭載可能な0.85型ハードディスクドライブの開発について - 東芝プレスリリース(2004年1月8日発表)2018年5月11日閲覧
- ^ “DSP 5200S hard drive”. 2020年10月25日閲覧。
- ^ “Digital Storage Products Model DSP5200 Model DSP5350 Installation Guide EK-DS002-IG. C01”. Digital Equipment Corporation. 2022年3月1日閲覧。
- ^ Failure Trends in a Large Disk Drive Population (PDF) (2008年4月6日時点のアーカイブ)
- ^ “HDD Reliability for Cloud Data Centers 2013 05 02 Bernhard Hiller WD.pdf Page.22”. 2014年11月18日閲覧。
- ^ シーゲート製BarraCudaとBarraCuda Proなどやウェスタンデジタル製WD Blue/WD Blackなど、HGST製Deskstarが該当。
- ^ シーゲート製IronWolfとIronWolf Proなど、ウエスタンデジタル製WD Red/WD Red Pro/WD Goldなど、HGST製Ultrastarが該当。
- ^ a b “オートリトラクト ‐ 通信用語の基礎知識”. www.wdic.org. 2018年10月22日閲覧。
- ^ Scientific American記事(英文)[1]
- ^ 参考: “データ復旧 成功事例”. 大塚商会. 2015年1月17日閲覧。
- ^ ハードディスククラッシャー&テープイレーサー[2]
- ^ storagevirtualization (2009年9月18日). “A brief History of Areal Density (Barry Whyte - An exchange and discussion of Storage Virtualization)” (英語). www.ibm.com. 2018年10月22日閲覧。
- ^ a b 日本HDD協会2013年1月セミナーレポート
- ^ Financial Press Releases - seagate社(英語、2011年4月19日発表)
- ^ WESTERN DIGITAL TO ACQUIRE HITACHI GLOBAL STORAGE TECHNOLOGIES - Western Digital社(英語、2011年3月7日発表)
- ^ Western Digital Unveils New Addition: 8TB Ultrastar® DC HC320 - Western Digital Corporate Blog Western Digital 2018年3月15日
- ハードディスクドライブのページへのリンク