AMP活性化プロテインキナーゼとは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > AMP活性化プロテインキナーゼの意味・解説 

AMP活性化プロテインキナーゼ

(AMPK から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/11/20 07:07 UTC 版)

AMP活性化プロテインキナーゼ(AMPかっせいかプロテインキナーゼ、: 5' adenosine monophosphate-activated protein kinase、略称: AMPK)は、細胞のエネルギー状態の恒常性に関係する酵素EC 2.7.11.31)で、細胞のエネルギーが低下しているときにグルコース脂肪酸の取り込みと酸化を活性化する。高度に保存されたタンパク質ファミリーに属し、酵母オルソログはSNF1、植物ではSnRK1と呼ばれる。AMPKは3つのタンパク質サブユニット)によって機能的な酵素が構成されており、酵母からヒトまで保存されている。AMPKは、肝臓骨格筋など多数の組織で発現している。AMPADPの結合に伴うAMPKの活性化によって、肝臓での脂肪酸の酸化の促進、ケトン生成英語版、骨格筋での脂肪酸の酸化とグルコースの取り込みの促進、コレステロール合成の阻害、脂質生成英語版脂肪細胞での脂肪分解の阻害、膵臓β細胞でのインスリン分泌の調節が行われる[1]


  1. ^ Winder, W. W.; Hardie, D. G. (07 1999). “AMP-activated protein kinase, a metabolic master switch: possible roles in type 2 diabetes”. The American Journal of Physiology 277 (1): E1–10. doi:10.1152/ajpendo.1999.277.1.E1. ISSN 0002-9513. PMID 10409121. https://www.ncbi.nlm.nih.gov/pubmed/10409121. 
  2. ^ a b Stapleton, D.; Mitchelhill, K. I.; Gao, G.; Widmer, J.; Michell, B. J.; Teh, T.; House, C. M.; Fernandez, C. S. et al. (1996-01-12). “Mammalian AMP-activated protein kinase subfamily”. The Journal of Biological Chemistry 271 (2): 611–614. doi:10.1074/jbc.271.2.611. ISSN 0021-9258. PMID 8557660. https://www.ncbi.nlm.nih.gov/pubmed/8557660. 
  3. ^ Kemp, Bruce E. (2004-01). “Bateman domains and adenosine derivatives form a binding contract”. The Journal of Clinical Investigation 113 (2): 182–184. doi:10.1172/JCI20846. ISSN 0021-9738. PMC PMC311445. PMID 14722609. https://www.ncbi.nlm.nih.gov/pubmed/14722609. 
  4. ^ Scott, John W.; Hawley, Simon A.; Green, Kevin A.; Anis, Miliea; Stewart, Greg; Scullion, Gillian A.; Norman, David G.; Hardie, D. Grahame (2004-01). “CBS domains form energy-sensing modules whose binding of adenosine ligands is disrupted by disease mutations”. The Journal of Clinical Investigation 113 (2): 274–284. doi:10.1172/JCI19874. ISSN 0021-9738. PMC PMC311435. PMID 14722619. https://www.ncbi.nlm.nih.gov/pubmed/14722619. 
  5. ^ a b Hawley, S. A.; Davison, M.; Woods, A.; Davies, S. P.; Beri, R. K.; Carling, D.; Hardie, D. G. (1996-11-01). “Characterization of the AMP-activated protein kinase kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase”. The Journal of Biological Chemistry 271 (44): 27879–27887. doi:10.1074/jbc.271.44.27879. ISSN 0021-9258. PMID 8910387. https://www.ncbi.nlm.nih.gov/pubmed/8910387. 
  6. ^ Thornton, C.; Snowden, M. A.; Carling, D. (1998-05-15). “Identification of a novel AMP-activated protein kinase beta subunit isoform that is highly expressed in skeletal muscle”. The Journal of Biological Chemistry 273 (20): 12443–12450. doi:10.1074/jbc.273.20.12443. ISSN 0021-9258. PMID 9575201. https://www.ncbi.nlm.nih.gov/pubmed/9575201. 
  7. ^ Cheung, P. C.; Salt, I. P.; Davies, S. P.; Hardie, D. G.; Carling, D. (2000-03-15). “Characterization of AMP-activated protein kinase gamma-subunit isoforms and their role in AMP binding”. The Biochemical Journal 346 Pt 3: 659–669. ISSN 0264-6021. PMC 1220898. PMID 10698692. https://www.ncbi.nlm.nih.gov/pubmed/10698692. 
  8. ^ Xiao, Bing; Heath, Richard; Saiu, Peter; Leiper, Fiona C.; Leone, Philippe; Jing, Chun; Walker, Philip A.; Haire, Lesley et al. (2007-09-27). “Structural basis for AMP binding to mammalian AMP-activated protein kinase”. Nature 449 (7161): 496–500. doi:10.1038/nature06161. ISSN 1476-4687. PMID 17851531. https://www.ncbi.nlm.nih.gov/pubmed/17851531. 
  9. ^ Xiao, Bing; Sanders, Matthew J.; Underwood, Elizabeth; Heath, Richard; Mayer, Faith V.; Carmena, David; Jing, Chun; Walker, Philip A. et al. (2011-04-14). “Structure of mammalian AMPK and its regulation by ADP”. Nature 472 (7342): 230–233. doi:10.1038/nature09932. ISSN 1476-4687. PMC 3078618. PMID 21399626. https://www.ncbi.nlm.nih.gov/pubmed/21399626. 
  10. ^ Chen, Lei; Wang, Jue; Zhang, Yuan-Yuan; Yan, S. Frank; Neumann, Dietbert; Schlattner, Uwe; Wang, Zhi-Xin; Wu, Jia-Wei (2012-06-03). “AMP-activated protein kinase undergoes nucleotide-dependent conformational changes”. Nature Structural & Molecular Biology 19 (7): 716–718. doi:10.1038/nsmb.2319. ISSN 1545-9985. PMID 22659875. https://www.ncbi.nlm.nih.gov/pubmed/22659875. 
  11. ^ a b c d e f g h i j k l Jeon, SM (15 July 2016). “Regulation and function of AMPK in physiology and diseases.”. Experimental & Molecular Medicine 48 (7): e245. doi:10.1038/emm.2016.81. PMC 4973318. PMID 27416781. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4973318/. 
  12. ^ “AMPK: a nutrient and energy sensor that maintains energy homeostasis”. Nature Reviews. Molecular Cell Biology 13 (4): 251–62. (March 2012). doi:10.1038/nrm3311. PMC 5726489. PMID 22436748. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5726489/. 
  13. ^ Bergeron, R.; Ren, J. M.; Cadman, K. S.; Moore, I. K.; Perret, P.; Pypaert, M.; Young, L. H.; Semenkovich, C. F. et al. (2001-12). “Chronic activation of AMP kinase results in NRF-1 activation and mitochondrial biogenesis”. American Journal of Physiology. Endocrinology and Metabolism 281 (6): E1340–1346. doi:10.1152/ajpendo.2001.281.6.E1340. ISSN 0193-1849. PMID 11701451. https://www.ncbi.nlm.nih.gov/pubmed/11701451. 
  14. ^ Holmes, B. F.; Kurth-Kraczek, E. J.; Winder, W. W. (1999-11). “Chronic activation of 5'-AMP-activated protein kinase increases GLUT-4, hexokinase, and glycogen in muscle”. Journal of Applied Physiology (Bethesda, Md.: 1985) 87 (5): 1990–1995. doi:10.1152/jappl.1999.87.5.1990. ISSN 8750-7587. PMID 10562646. https://www.ncbi.nlm.nih.gov/pubmed/10562646. 
  15. ^ a b c d e Holmes, B. F.; Kurth-Kraczek, E. J.; Winder, W. W. (1999-11). “Chronic activation of 5'-AMP-activated protein kinase increases GLUT-4, hexokinase, and glycogen in muscle”. Journal of Applied Physiology (Bethesda, Md.: 1985) 87 (5): 1990–1995. doi:10.1152/jappl.1999.87.5.1990. ISSN 8750-7587. PMID 10562646. https://www.ncbi.nlm.nih.gov/pubmed/10562646. 
  16. ^ a b Ojuka, Edward O.; Jones, Terry E.; Nolte, Lorraine A.; Chen, May; Wamhoff, Brian R.; Sturek, Michael; Holloszy, John O. (2002-05). “Regulation of GLUT4 biogenesis in muscle: evidence for involvement of AMPK and Ca(2+)”. American Journal of Physiology. Endocrinology and Metabolism 282 (5): E1008–1013. doi:10.1152/ajpendo.00512.2001. ISSN 0193-1849. PMID 11934664. https://www.ncbi.nlm.nih.gov/pubmed/11934664. 
  17. ^ a b c Stoppani, James; Hildebrandt, Audrey L.; Sakamoto, Kei; Cameron-Smith, David; Goodyear, Laurie J.; Neufer, P. Darrell (2002-12). “AMP-activated protein kinase activates transcription of the UCP3 and HKII genes in rat skeletal muscle”. American Journal of Physiology. Endocrinology and Metabolism 283 (6): E1239–1248. doi:10.1152/ajpendo.00278.2002. ISSN 0193-1849. PMID 12388122. https://www.ncbi.nlm.nih.gov/pubmed/12388122. 
  18. ^ Ojuka, Edward O. (2004-05). “Role of calcium and AMP kinase in the regulation of mitochondrial biogenesis and GLUT4 levels in muscle”. The Proceedings of the Nutrition Society 63 (2): 275–278. doi:10.1079/PNS2004339. ISSN 0029-6651. PMID 15294043. https://www.ncbi.nlm.nih.gov/pubmed/15294043. 
  19. ^ a b Winder, W. W.; Holmes, B. F.; Rubink, D. S.; Jensen, E. B.; Chen, M.; Holloszy, J. O. (2000-06). “Activation of AMP-activated protein kinase increases mitochondrial enzymes in skeletal muscle”. Journal of Applied Physiology (Bethesda, Md.: 1985) 88 (6): 2219–2226. doi:10.1152/jappl.2000.88.6.2219. ISSN 8750-7587. PMID 10846039. https://www.ncbi.nlm.nih.gov/pubmed/10846039. 
  20. ^ a b Ouchi, Noriyuki; Shibata, Rei; Walsh, Kenneth (2005-04-29). “AMP-activated protein kinase signaling stimulates VEGF expression and angiogenesis in skeletal muscle”. Circulation Research 96 (8): 838–846. doi:10.1161/01.RES.0000163633.10240.3b. ISSN 1524-4571. PMID 15790954. https://www.ncbi.nlm.nih.gov/pubmed/15790954. 
  21. ^ a b Hayashi, T.; Hirshman, M. F.; Kurth, E. J.; Winder, W. W.; Goodyear, L. J. (1998-08). “Evidence for 5' AMP-activated protein kinase mediation of the effect of muscle contraction on glucose transport”. Diabetes 47 (8): 1369–1373. doi:10.2337/diab.47.8.1369. ISSN 0012-1797. PMID 9703344. https://www.ncbi.nlm.nih.gov/pubmed/9703344. 
  22. ^ Hayashi, T.; Hirshman, M. F.; Fujii, N.; Habinowski, S. A.; Witters, L. A.; Goodyear, L. J. (2000-04). “Metabolic stress and altered glucose transport: activation of AMP-activated protein kinase as a unifying coupling mechanism”. Diabetes 49 (4): 527–531. doi:10.2337/diabetes.49.4.527. ISSN 0012-1797. PMID 10871188. https://www.ncbi.nlm.nih.gov/pubmed/10871188. 
  23. ^ Kurth-Kraczek, E. J.; Hirshman, M. F.; Goodyear, L. J.; Winder, W. W. (1999-08). “5' AMP-activated protein kinase activation causes GLUT4 translocation in skeletal muscle”. Diabetes 48 (8): 1667–1671. doi:10.2337/diabetes.48.8.1667. ISSN 0012-1797. PMID 10426389. https://www.ncbi.nlm.nih.gov/pubmed/10426389. 
  24. ^ a b Merrill, G. F.; Kurth, E. J.; Hardie, D. G.; Winder, W. W. (12 1997). “AICA riboside increases AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle”. The American Journal of Physiology 273 (6): E1107–1112. doi:10.1152/ajpendo.1997.273.6.E1107. ISSN 0002-9513. PMID 9435525. https://www.ncbi.nlm.nih.gov/pubmed/9435525. 
  25. ^ Marsin, A. S.; Bertrand, L.; Rider, M. H.; Deprez, J.; Beauloye, C.; Vincent, M. F.; Van den Berghe, G.; Carling, D. et al. (2000-10-19). “Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia”. Current biology: CB 10 (20): 1247–1255. doi:10.1016/s0960-9822(00)00742-9. ISSN 0960-9822. PMID 11069105. https://www.ncbi.nlm.nih.gov/pubmed/11069105. 
  26. ^ Richter, Erik A.; Ruderman, Neil B. (2009-03-01). “AMPK and the biochemistry of exercise: implications for human health and disease”. The Biochemical Journal 418 (2): 261–275. doi:10.1042/BJ20082055. ISSN 1470-8728. PMC 2779044. PMID 19196246. https://www.ncbi.nlm.nih.gov/pubmed/19196246. 
  27. ^ Stein, S. C.; Woods, A.; Jones, N. A.; Davison, M. D.; Carling, D. (2000-02-01). “The regulation of AMP-activated protein kinase by phosphorylation”. The Biochemical Journal 345 Pt 3: 437–443. ISSN 0264-6021. PMC 1220775. PMID 10642499. https://www.ncbi.nlm.nih.gov/pubmed/10642499. 
  28. ^ Hawley, Simon A.; Boudeau, Jérôme; Reid, Jennifer L.; Mustard, Kirsty J.; Udd, Lina; Mäkelä, Tomi P.; Alessi, Dario R.; Hardie, D. Grahame (2003). “Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade”. Journal of Biology 2 (4): 28. doi:10.1186/1475-4924-2-28. ISSN 1475-4924. PMC PMC333410. PMID 14511394. https://www.ncbi.nlm.nih.gov/pubmed/14511394. 
  29. ^ Woods, Angela; Johnstone, Stephen R.; Dickerson, Kristina; Leiper, Fiona C.; Fryer, Lee G. D.; Neumann, Dietbert; Schlattner, Uwe; Wallimann, Theo et al. (2003-11-11). “LKB1 is the upstream kinase in the AMP-activated protein kinase cascade”. Current biology: CB 13 (22): 2004–2008. doi:10.1016/j.cub.2003.10.031. ISSN 0960-9822. PMID 14614828. https://www.ncbi.nlm.nih.gov/pubmed/14614828. 
  30. ^ Hurst, Denise; Taylor, Eric B.; Cline, Troy D.; Greenwood, Lyle J.; Compton, Cori L.; Lamb, Jeremy D.; Winder, William W. (2005-10). “AMP-activated protein kinase kinase activity and phosphorylation of AMP-activated protein kinase in contracting muscle of sedentary and endurance-trained rats”. American Journal of Physiology. Endocrinology and Metabolism 289 (4): E710–715. doi:10.1152/ajpendo.00155.2005. ISSN 0193-1849. PMID 15928023. https://www.ncbi.nlm.nih.gov/pubmed/15928023. 
  31. ^ Hutber, C. A.; Hardie, D. G.; Winder, W. W. (1997-02). “Electrical stimulation inactivates muscle acetyl-CoA carboxylase and increases AMP-activated protein kinase”. The American Journal of Physiology 272 (2 Pt 1): E262–266. doi:10.1152/ajpendo.1997.272.2.E262. ISSN 0002-9513. PMID 9124333. https://www.ncbi.nlm.nih.gov/pubmed/9124333. 
  32. ^ Taylor, E. B.; Hurst, D.; Greenwood, L. J.; Lamb, J. D.; Cline, T. D.; Sudweeks, S. N.; Winder, W. W. (2004-12). “Endurance training increases LKB1 and MO25 protein but not AMP-activated protein kinase kinase activity in skeletal muscle”. American Journal of Physiology. Endocrinology and Metabolism 287 (6): E1082–1089. doi:10.1152/ajpendo.00179.2004. ISSN 0193-1849. PMID 15292028. https://www.ncbi.nlm.nih.gov/pubmed/15292028. 
  33. ^ Taylor, Eric B.; Lamb, Jeremy D.; Hurst, Richard W.; Chesser, David G.; Ellingson, William J.; Greenwood, Lyle J.; Porter, Brian B.; Herway, Seth T. et al. (2005-12). “Endurance training increases skeletal muscle LKB1 and PGC-1alpha protein abundance: effects of time and intensity”. American Journal of Physiology. Endocrinology and Metabolism 289 (6): E960–968. doi:10.1152/ajpendo.00237.2005. ISSN 0193-1849. PMID 16014350. https://www.ncbi.nlm.nih.gov/pubmed/16014350. 
  34. ^ Jørgensen, Sebastian B.; Treebak, Jonas T.; Viollet, Benoit; Schjerling, Peter; Vaulont, Sophie; Wojtaszewski, Jørgen F. P.; Richter, Erik A. (2007-01). “Role of AMPKalpha2 in basal, training-, and AICAR-induced GLUT4, hexokinase II, and mitochondrial protein expression in mouse muscle”. American Journal of Physiology. Endocrinology and Metabolism 292 (1): E331–339. doi:10.1152/ajpendo.00243.2006. ISSN 0193-1849. PMID 16954334. https://www.ncbi.nlm.nih.gov/pubmed/16954334. 
  35. ^ Röckl, Katja S. C.; Hirshman, Michael F.; Brandauer, Josef; Fujii, Nobuharu; Witters, Lee A.; Goodyear, Laurie J. (2007-08). “Skeletal muscle adaptation to exercise training: AMP-activated protein kinase mediates muscle fiber type shift”. Diabetes 56 (8): 2062–2069. doi:10.2337/db07-0255. ISSN 1939-327X. PMID 17513699. https://www.ncbi.nlm.nih.gov/pubmed/17513699. 
  36. ^ Saha, A. K.; Schwarsin, A. J.; Roduit, R.; Masse, F.; Kaushik, V.; Tornheim, K.; Prentki, M.; Ruderman, N. B. (2000-08-11). “Activation of malonyl-CoA decarboxylase in rat skeletal muscle by contraction and the AMP-activated protein kinase activator 5-aminoimidazole-4-carboxamide-1-beta -D-ribofuranoside”. The Journal of Biological Chemistry 275 (32): 24279–24283. doi:10.1074/jbc.C000291200. ISSN 0021-9258. PMID 10854420. https://www.ncbi.nlm.nih.gov/pubmed/10854420. 
  37. ^ Hardie, D. G. (1992-02-12). “Regulation of fatty acid and cholesterol metabolism by the AMP-activated protein kinase”. Biochimica Et Biophysica Acta 1123 (3): 231–238. doi:10.1016/0005-2760(92)90001-c. ISSN 0006-3002. PMID 1536860. https://www.ncbi.nlm.nih.gov/pubmed/1536860. 
  38. ^ a b c Richter, Erik A.; Hargreaves, Mark (2013-07). “Exercise, GLUT4, and skeletal muscle glucose uptake”. Physiological Reviews 93 (3): 993–1017. doi:10.1152/physrev.00038.2012. ISSN 1522-1210. PMID 23899560. https://www.ncbi.nlm.nih.gov/pubmed/23899560. 
  39. ^ Sherman, L. A.; Hirshman, M. F.; Cormont, M.; Le Marchand-Brustel, Y.; Goodyear, L. J. (1996-01). “Differential effects of insulin and exercise on Rab4 distribution in rat skeletal muscle”. Endocrinology 137 (1): 266–273. doi:10.1210/endo.137.1.8536622. ISSN 0013-7227. PMID 8536622. https://www.ncbi.nlm.nih.gov/pubmed/8536622. 
  40. ^ Winder, W. W. (2001-09). “Energy-sensing and signaling by AMP-activated protein kinase in skeletal muscle”. Journal of Applied Physiology (Bethesda, Md.: 1985) 91 (3): 1017–1028. doi:10.1152/jappl.2001.91.3.1017. ISSN 8750-7587. PMID 11509493. https://www.ncbi.nlm.nih.gov/pubmed/11509493. 
  41. ^ a b Holmes, Burton F.; Sparling, David P.; Olson, Ann Louise; Winder, William W.; Dohm, G. Lynis (2005-12). “Regulation of muscle GLUT4 enhancer factor and myocyte enhancer factor 2 by AMP-activated protein kinase”. American Journal of Physiology. Endocrinology and Metabolism 289 (6): E1071–1076. doi:10.1152/ajpendo.00606.2004. ISSN 0193-1849. PMID 16105857. https://www.ncbi.nlm.nih.gov/pubmed/16105857. 
  42. ^ Ojuka, E. O.; Nolte, L. A.; Holloszy, J. O. (2000-03). “Increased expression of GLUT-4 and hexokinase in rat epitrochlearis muscles exposed to AICAR in vitro”. Journal of Applied Physiology (Bethesda, Md.: 1985) 88 (3): 1072–1075. doi:10.1152/jappl.2000.88.3.1072. ISSN 8750-7587. PMID 10710405. https://www.ncbi.nlm.nih.gov/pubmed/10710405. 
  43. ^ Holloszy, J. O.; Oscai, L. B.; Don, I. J.; Molé, P. A. (1970-09-30). “Mitochondrial citric acid cycle and related enzymes: adaptive response to exercise”. Biochemical and Biophysical Research Communications 40 (6): 1368–1373. doi:10.1016/0006-291x(70)90017-3. ISSN 0006-291X. PMID 4327015. https://www.ncbi.nlm.nih.gov/pubmed/4327015. 
  44. ^ a b Thomson, D. M.; Porter, B. B.; Tall, J. H.; Kim, H.-J.; Barrow, J. R.; Winder, W. W. (2007-01). “Skeletal muscle and heart LKB1 deficiency causes decreased voluntary running and reduced muscle mitochondrial marker enzyme expression in mice”. American Journal of Physiology. Endocrinology and Metabolism 292 (1): E196–202. doi:10.1152/ajpendo.00366.2006. ISSN 0193-1849. PMID 16926377. https://www.ncbi.nlm.nih.gov/pubmed/16926377. 
  45. ^ Zong, Haihong; Ren, Jian Ming; Young, Lawrence H.; Pypaert, Marc; Mu, James; Birnbaum, Morris J.; Shulman, Gerald I. (2002-12-10). “AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation”. Proceedings of the National Academy of Sciences of the United States of America 99 (25): 15983–15987. doi:10.1073/pnas.252625599. ISSN 0027-8424. PMC PMC138551. PMID 12444247. https://www.ncbi.nlm.nih.gov/pubmed/12444247. 
  46. ^ Sadana, Prabodh; Park, Edwards A. (2007-05-01). “Characterization of the transactivation domain in the peroxisome-proliferator-activated receptor gamma co-activator (PGC-1)”. The Biochemical Journal 403 (3): 511–518. doi:10.1042/BJ20061526. ISSN 1470-8728. PMC 1876382. PMID 17284167. https://www.ncbi.nlm.nih.gov/pubmed/17284167. 
  47. ^ Michael, L. F.; Wu, Z.; Cheatham, R. B.; Puigserver, P.; Adelmant, G.; Lehman, J. J.; Kelly, D. P.; Spiegelman, B. M. (2001-03-27). “Restoration of insulin-sensitive glucose transporter (GLUT4) gene expression in muscle cells by the transcriptional coactivator PGC-1”. Proceedings of the National Academy of Sciences of the United States of America 98 (7): 3820–3825. doi:10.1073/pnas.061035098. ISSN 0027-8424. PMC PMC31136. PMID 11274399. https://www.ncbi.nlm.nih.gov/pubmed/11274399. 
  48. ^ a b Akimoto, Takayuki; Sorg, Brian S.; Yan, Zhen (2004-09). “Real-time imaging of peroxisome proliferator-activated receptor-gamma coactivator-1alpha promoter activity in skeletal muscles of living mice”. American Journal of Physiology. Cell Physiology 287 (3): C790–796. doi:10.1152/ajpcell.00425.2003. ISSN 0363-6143. PMID 15151904. https://www.ncbi.nlm.nih.gov/pubmed/15151904. 
  49. ^ Handschin, Christoph; Rhee, James; Lin, Jiandie; Tarr, Paul T.; Spiegelman, Bruce M. (2003-06-10). “An autoregulatory loop controls peroxisome proliferator-activated receptor gamma coactivator 1alpha expression in muscle”. Proceedings of the National Academy of Sciences of the United States of America 100 (12): 7111–7116. doi:10.1073/pnas.1232352100. ISSN 0027-8424. PMC PMC165838. PMID 12764228. https://www.ncbi.nlm.nih.gov/pubmed/12764228. 
  50. ^ a b Park, S. H.; Paulsen, S. R.; Gammon, S. R.; Mustard, K. J.; Hardie, D. G.; Winder, W. W. (2002-12). “Effects of thyroid state on AMP-activated protein kinase and acetyl-CoA carboxylase expression in muscle”. Journal of Applied Physiology (Bethesda, Md.: 1985) 93 (6): 2081–2088. doi:10.1152/japplphysiol.00504.2002. ISSN 8750-7587. PMID 12433937. https://www.ncbi.nlm.nih.gov/pubmed/12433937. 
  51. ^ Sun, G.; Tarasov, A. I.; McGinty, J.; McDonald, A.; da Silva Xavier, G.; Gorman, T.; Marley, A.; French, P. M. et al. (2010-05). “Ablation of AMP-activated protein kinase alpha1 and alpha2 from mouse pancreatic beta cells and RIP2.Cre neurons suppresses insulin release in vivo”. Diabetologia 53 (5): 924–936. doi:10.1007/s00125-010-1692-1. ISSN 1432-0428. PMC 4306708. PMID 20221584. https://www.ncbi.nlm.nih.gov/pubmed/20221584. 
  52. ^ Beall, Craig; Piipari, Kaisa; Al-Qassab, Hind; Smith, Mark A.; Parker, Nadeene; Carling, David; Viollet, Benoit; Withers, Dominic J. et al. (2010-07-15). “Loss of AMP-activated protein kinase alpha2 subunit in mouse beta-cells impairs glucose-stimulated insulin secretion and inhibits their sensitivity to hypoglycaemia”. The Biochemical Journal 429 (2): 323–333. doi:10.1042/BJ20100231. ISSN 1470-8728. PMC 2895783. PMID 20465544. https://www.ncbi.nlm.nih.gov/pubmed/20465544. 
  53. ^ Claret, Marc; Smith, Mark A.; Batterham, Rachel L.; Selman, Colin; Choudhury, Agharul I.; Fryer, Lee G. D.; Clements, Melanie; Al-Qassab, Hind et al. (2007-08). “AMPK is essential for energy homeostasis regulation and glucose sensing by POMC and AgRP neurons”. The Journal of Clinical Investigation 117 (8): 2325–2336. doi:10.1172/JCI31516. ISSN 0021-9738. PMC 1934578. PMID 17671657. https://www.ncbi.nlm.nih.gov/pubmed/17671657. 
  54. ^ Beall, C.; Hamilton, D. L.; Gallagher, J.; Logie, L.; Wright, K.; Soutar, M. P.; Dadak, S.; Ashford, F. B. et al. (2012-09). “Mouse hypothalamic GT1-7 cells demonstrate AMPK-dependent intrinsic glucose-sensing behaviour”. Diabetologia 55 (9): 2432–2444. doi:10.1007/s00125-012-2617-y. ISSN 1432-0428. PMC 3411292. PMID 22760787. https://www.ncbi.nlm.nih.gov/pubmed/22760787. 
  55. ^ Alquier, Thierry; Kawashima, Junji; Tsuji, Youki; Kahn, Barbara B. (2007-03). “Role of hypothalamic adenosine 5'-monophosphate-activated protein kinase in the impaired counterregulatory response induced by repetitive neuroglucopenia”. Endocrinology 148 (3): 1367–1375. doi:10.1210/en.2006-1039. ISSN 0013-7227. PMID 17185376. https://www.ncbi.nlm.nih.gov/pubmed/17185376. 
  56. ^ McCrimmon, Rory J.; Shaw, Margaret; Fan, Xiaoning; Cheng, Haiying; Ding, Yuyan; Vella, Monica C.; Zhou, Ligang; McNay, Ewan C. et al. (2008-02). “Key role for AMP-activated protein kinase in the ventromedial hypothalamus in regulating counterregulatory hormone responses to acute hypoglycemia”. Diabetes 57 (2): 444–450. doi:10.2337/db07-0837. ISSN 1939-327X. PMID 17977955. https://www.ncbi.nlm.nih.gov/pubmed/17977955. 
  57. ^ Fan, X.; Ding, Y.; Brown, S.; Zhou, L.; Shaw, M.; Vella, M. C.; Cheng, H.; McNay, E. C. et al. (2009-06). “Hypothalamic AMP-activated protein kinase activation with AICAR amplifies counterregulatory responses to hypoglycemia in a rodent model of type 1 diabetes”. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology 296 (6): R1702–1708. doi:10.1152/ajpregu.90600.2008. ISSN 0363-6119. PMC 2692788. PMID 19357294. https://www.ncbi.nlm.nih.gov/pubmed/19357294. 
  58. ^ Schulz, Tim J.; Zarse, Kim; Voigt, Anja; Urban, Nadine; Birringer, Marc; Ristow, Michael (2007-10). “Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress”. Cell Metabolism 6 (4): 280–293. doi:10.1016/j.cmet.2007.08.011. ISSN 1550-4131. PMID 17908557. https://www.ncbi.nlm.nih.gov/pubmed/17908557. 


「AMP活性化プロテインキナーゼ」の続きの解説一覧



英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  
  •  AMP活性化プロテインキナーゼのページへのリンク

辞書ショートカット

すべての辞書の索引

「AMP活性化プロテインキナーゼ」の関連用語

AMP活性化プロテインキナーゼのお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



AMP活性化プロテインキナーゼのページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのAMP活性化プロテインキナーゼ (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS