部分加群と準同型
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/11/12 07:37 UTC 版)
M を左 R-加群、N を M の部分群とするとき、N が M の部分加群 (submodule) あるいはより明示的に R-部分加群(または部分 R-加群)であるとは、任意の r ∈ R と n ∈ N に対して積 rn がふたたび N に属するときに言う。M が右加群の場合は nr が N に属するとき同様に部分加群という。 与えられた加群 M の部分群全体の成す集合は、ふたつの二項演算 "+" および "∩" に関して束を成しモジュラー法則 M の部分加群 U, N1, N2 で N1 ⊂ N2 が成り立つとき、 (N1 + U) ∩ N2 = N1 + (U ∩ N2) が成立する を満たす。 M および N が左 R-加群のとき、写像 f: M → N が R-加群の準同型であるとは、任意の m, n ∈ M, r, s ∈ R に対して f ( r m + s n ) = r f ( m ) + s f ( n ) {\displaystyle f(rm+sn)=rf(m)+sf(n)} が満たされるときに言う。ほかの数学的対象に関する準同型が対象の構造を保つのと同じく、加群の準同型も加群の構造を保つ。 全単射な加群の準同型写像は加群の同型写像であり、同型写像を持つふたつの加群は互いに同型であるという。ふたつの同型な加群は、それらの元の表し方が異なるだけであり、実用上は同一視することができる。 加群準同型 f: M → N の核とは f によって 0 に移される元全体から成る M の部分加群である。群やベクトル空間において馴染み深い同型定理は R-加群に対しても成立する。 左 R-加群およびそれらの間の加群準同型の全体は圏を成し、R-Mod で表される。この圏はアーベル圏である。
※この「部分加群と準同型」の解説は、「環上の加群」の解説の一部です。
「部分加群と準同型」を含む「環上の加群」の記事については、「環上の加群」の概要を参照ください。
- 部分加群と準同型のページへのリンク